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1.0 INTRODUCTION 
 
In recent years, Southwest Research Institute® (SwRI®) and NASA Glenn Research Center 
(GRC) have worked independently on the development of probabilistic lifing methods for 
materials used in gas turbine engine rotors.  The two organizations have addressed different but 
complementary technical challenges.  This final report summarizes a brief investigation into the 
current status of relevant technology at SwRI and GRC with a view towards a future integration 
of methods and models developed by GRC for probabilistic lifing of powder metallurgy (P/M) 
nickel turbine rotor alloys into the DARWIN® software developed by SwRI. 
 

1.1 Background 
 
Previous Activity at SwRI.  Work at SwRI was originally motivated by incidents involving 
uncontained rotor fracture at Sioux City, Iowa, in 1989 and Pensacola, Florida, in 1996.  As a 
result of these incidents, the Federal Aviation Administration (FAA) requested that the aircraft 
engine industry, through the Aerospace Industries Association (AIA) Rotor Integrity Sub-
Committee (RISC), review available techniques to determine whether a damage tolerance 
approach could be introduced to produce a reduction in the rate of uncontained rotor events.  
During the development of this probabilistic damage tolerance approach, it became apparent to 
RISC that the capabilities and effectiveness of the emerging technology could be significantly 
enhanced by further research and development.  SwRI, in partnership with four major 
U.S. engine manufacturers and with guidance from RISC, proposed and was awarded a series of 
major FAA grants beginning in 1995 to address identified shortfalls in technology and data. 
 
One of the key outcomes of this work has been the probabilistic damage tolerance computer code 
DARWIN (Design Assessment of Reliability With INspection).  DARWIN integrates finite 
element models and stress analysis results, fracture mechanics models, material anomaly data, 
probability of anomaly detection, and uncertain inspection schedules with a user-friendly 
graphical user interface (GUI) to determine the probability-of-fracture of a high-energy rotating 
component as a function of operating cycles with and without inspections.   
 
Initial DARWIN capabilities were focused on the hard alpha titanium problem, which had 
caused the Sioux City incident.  Later DARWIN work focused on surface damage at machined 
circular holes, which had caused the Pensacola incident.  With direct guidance from the FAA, 
DARWIN has been tailored to address specific advisory circulars issued by the FAA, including 
AC 33.14-1 for titanium hard alpha, AC 33.70-2 on circular holes in all materials, and the more 
general AC 33.70-1 for all engine life-limited parts.  The FAA has indicated that DARWIN is an 
acceptable means of compliance with these advisory circulars, and DARWIN has been employed 
in the formal FAA certification process for numerous engines. 
 
Some elementary DARWIN capabilities have also been developed to address superalloys with 
high anomaly occurrence rates, including probabilistic three-dimensional (3D) descriptions of 
anomaly sizes and orientations, and provisions for users to integrate their own probabilistic crack 
formation life modules.  However, this work has been limited due to other, more pressing FAA 
and RISC priorities, and additional effort on these topics is not planned under the current FAA 
grant. 
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At the request of the FAA and the engine industry, SwRI began licensing and providing formal 
user support for DARWIN in 2000.  Currently DARWIN is licensed by six aircraft engine 
companies and two foreign government laboratories.  DARWIN is also available on a 
royalty-free basis to all U.S. government agencies. 
 
Previous Activity at NASA Glenn Research Center.  For more than twelve years, GRC has been 
actively investigating and developing models for the fatigue behavior of P/M nickel-based alloys 
that are being increasingly used in high energy rotating components for gas turbine engines.  
These alloys have many advantages over conventionally cast and wrought alloys, but they suffer 
from the rare occurrence of non-metallic defects (ceramic inclusions) that arise from the powder 
atomization process.  These inclusions can have a potentially large detrimental effect on the 
fatigue life of individual components.  GRC activity has primarily focused on understanding and 
modeling the effects of ceramic inclusions on fatigue life, and on developing improved life 
prediction methods that could be applied to components.  The work has resulted in the 
development of an extensive and unique data base that captures the relationships between 
inclusion size and shape distributions and the low cycle fatigue life for various temperature and 
stress regimes.  Probabilistic models and algorithms have been developed that simulate the effect 
of inclusion occurrence rate, size distribution and material processing forging strains on fatigue 
life.  Work is continuing to refine these models further and to begin their verification and 
validation. 
 

1.2 Approach 
 

This report summarizes a joint critical review of previous work by SwRI and GRC to identify 
specific GRC data and models that could be integrated into DARWIN, to identify new DARWIN 
functionality that must be developed to enable this integration, to identify additional data or 
models that are needed, and then to outline a program plan to accomplish the desired integration.  
Some initial work was also performed to begin developing some of the needed algorithms. 
 
This critical review began by SwRI and GRC each compiling and presenting to the other 
organization a detailed briefing describing the relevant background technology. 
SwRI summarized current DARWIN capabilities with special emphasis on multiple anomaly 
materials, while GRC summarized their existing data and models for P/M materials.  SwRI then 
performed a detailed review and critique of this work, with a focus on determining how existing 
GRC data and models could fit into current DARWIN capabilities, as well as identifying 
apparent gaps in current DARWIN capabilities. 
 
This briefing and the first critique was conducted at a face-to-face initial technical exchange 
meeting conducted at Honeywell Aerospace in Phoenix, Arizona on December 9, 2008.  
The main attendees were Jack Telesman and Peter Bonacuse from GRC, Craig McClung and 
Michael Enright from SwRI, and Peter Kantzos (formerly at GRC) from Honeywell.  Most of the 
meeting was devoted to a series of technical presentations that summarized previous work at 
GRC and SwRI applicable to P/M lifing. 
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This technical exchange meeting launched efforts to develop formal written summaries of the 
existing data, models, and software, along with an initial assessment of future needs.  
These written summaries are provided in Section 2 of this final report. 
 
New algorithm development was conducted in three areas.  First, a methodology for estimating 
anomaly distributions for materials in which multiple anomaly types are operative was developed 
and verified.  Second, an unfolding algorithm to estimate the dimensions and orientations of 3D 
spheroids based on 2D sectioning measurements was implemented and investigated.  Third, the 
behavior of small fatigue cracks in U720 tests conducted by GRC was investigated, and an 
existing model to predict this small-crack behavior from large-crack growth rates was evaluated.  
These activities are described in Section 3. 
 
One of the primary objectives of the current study was to identify technologies for assessment of 
P/M materials developed at GRC that could be transferred for use by gas turbine engine 
manufacturers.  Based on the GRC status summary and the DARWIN capabilities summary, 
several technology gaps were identified related to (1) characterization and simulation of 3D 
anomalies based on data from different types of inspections, (2) understanding and analysis of 
anomaly deformation and breakup during the forging process, and (3) treatment of various 
factors that can influence fatigue crack growth lives.  A program plan for the development and 
implementation of key algorithms and software modules in DARWIN to address the technology 
gaps was developed and is described in Section 4. 
 
It was originally envisioned that, during the course of this project, SwRI would interact with all 
four of the major U.S. aircraft engine manufacturers as well as other government agencies that 
are performing research in the subject areas.  This communication and consultation would be 
designed to assess previous industry work in this area and to provide a formal overview of the 
technical exchange activities conducted during this year, as well as the status summaries and 
program plans.  The manufacturers and the government agencies would be invited to review and 
comment on this information, and their interest in participating in future implementation efforts 
would be assessed.  However, as the funding scenario for future efforts changed, NASA GRC 
directed that this communication and consultation effort be de-emphasized at the present time.  
Informal conversations were conducted with two of the four manufacturers on topics of specific 
interest.  In addition, relevant public domain literature authored by staff from various aircraft 
engine manufacturers was critically reviewed.  About twenty technical reports, journal articles, 
and conference papers related to fatigue life prediction of P/M alloys were included in this 
exercise.  A formal written summary was not prepared. 
 



(This page intentionally left blank.) 
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2.0 STATUS SUMMARIES 
 

2.1 Research in P/M Lifing Conducted at NASA Glenn Research Center 
 
For more than ten years, NASA Glenn Research Center has been actively investigating and 
developing models for the fatigue behavior of powder metallurgy (P/M) nickel-based alloys used 
in high energy rotating components for gas turbine engines.  The purpose of this section is to 
provide an overview of the major investigations and findings at GRC.  The technical details are 
not repeated here, but GRC publications and presentations that provide those details are 
thoroughly cited.  This status summary is an important first step towards the development of a 
plan for further research and development activities that would be necessary to integrate the 
GRC technology into the DARWIN software. 
 
The GRC investigations focused on a single materials system—Udimet® 720—in both seeded 
and unseeded forms.  Therefore, some of the specific conclusions of the GRC work may be 
limited to this specific material.  However, it was the intent of GRC, and it is the intent of the 
current survey, to identify phenomena, relationships, and methods that are applicable to a broad 
range of P/M superalloys. 
 
The GRC seeded investigations included two different types of seeds.  One set of artificial 
inclusions was made of crushed Alcoa T64 alumina, a common crucible material, selected to 
represent a hard, blocky Type I inclusion.  These seeds were screened to different size ranges in 
different studies, including -140/+170 mesh (nominal diameter 122 m) and -80/+100 mesh.  
A second seed type was produced by crushing pre-baked Ram 90 alumina crucible paste, 
representative of soft/friable Type II inclusions.  The Ram 90 seeds were screened to mesh sizes 
of either -270/+325 (nominal diameter 54 m) or -140/+170.  The base material was production 
quality U720 powder screened to -270 mesh and processed conventionally.  Seeds did not affect 
the resultant microstructure.  Seeding rates were chosen to ensure an appropriate number of 
surface inclusions in fatigue test specimens. 
 
The GRC research can be organized into two broad categories.  The first category involves the 
determination of the proper statistical descriptions of anomaly size, shape, and frequency.  
These anomaly distributions would then be used as input to the reliability calculations.  
The second category involves the calculation of the probability of fracture of a coupon or 
component, given that an anomaly is present.  This determination involves some treatment of 
fatigue crack formation life and fatigue crack growth life, including the effects of various 
residual stresses. 
 

2.1.1 Determination of Anomaly Distributions 
 
Because non-metallic inclusions and other metallurgical defects can have a significant 
deleterious effect on the fatigue performance of P/M superalloys, the “cleanliness” of a particular 
alloy or material lot is a critical characteristic.  Kantzos et al. (2004) have correctly emphasized 
that both the size and number of inclusions must be considered to characterize cleanliness. 
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Three different sources of data may be available to determine anomaly sizes and frequencies.  
The first is measurements of inclusions that have been completely separated from the matrix 
material, the second is measurements of implanted inclusions from sectioning of the material, 
and the third is measurements of implanted inclusions that initiated significant cracks in a fatigue 
test.  Each is considered here in turn. 
 
Non-metallic inclusions in powder metallurgy alloys tend to be irregularly shaped although 
mostly convex.  The GRC approach to characterizing defect sizes and shapes employed an 
idealized ellipsoid model to approximate the defect geometry, whether data resulted from HLS, 
metallography, or fractography. 
 
Calculation of Anomaly Distributions from Heavy Liquid Separation Data 
 
Several methods have been attempted to separate ceramic inclusions from a base metal powder, 
including water elutriation, froth flotation, and heavy liquid separation (Roth et al., 1994).  
The most successful of these methods has been heavy liquid separation (HLS), originally 
developed by Battelle for Wyman-Gordon, and developed further by GE and Wyman-Gordon for 
application to nickel-base powder alloys.  In order to perform HLS analysis of anomaly sizes, the 
blended metal powder is mixed with a heavy liquid whose density is less than that of the 
superalloy powder but greater than the density of the inclusions.  Low density ceramic inclusions 
float to the surface while higher density powder metal will sink.  The ceramic inclusions can be 
separated from the solution and characterized (number and size) using standard visual 
examination techniques.  A major concern with HLS is that the heavy liquid used 
(thallium malonate-formate solution) is highly toxic and requires careful handling procedures. 
 
The HLS method can generate extensive data on the size and shape of inclusions, and these data 
can easily be characterized in terms of standard statistical quantities.  These inclusions are 
typically lying on a flat surface when inspected, and so it is easy to identify and measure the 
largest dimension of the inclusion, as well as the size orthogonal to this dimension in the plane of 
the flat surface.  However, the third dimension of the inclusion (the out-of-plane dimension) is 
not so easily measured, unless the inclusion is manipulated to present the third dimension to the 
optical plane. 
 
In earlier GRC investigations of artificial seeds (Kantzos et al., 2003; Bonacuse et al., 2002), 
when no data were available for the third dimension, it was assumed that the relationship of the 
third dimension to the second dimension was the same as the relationship of the second 
dimension to the first dimension (i.e., the mean and standard deviation were a factor of 
0.667 times the size of the larger dimension), and it was further assumed that the correlation 
between the second and third dimensions was the same as between the first and second. 
 
However, GRC subsequently generated data for the third dimension by inclining the tape  
(to which the seeds were adhered) perpendicular to the original inspection direction  
(Bonacuse et al., 2006).  The resulting data revealed that the assumed scaling of the third 
dimension (mean and standard deviation reduced by a factor of 0.667 relative to the second 
dimension) was remarkably accurate.  It also revealed, however, that the correlation between the 
second and third dimensions was completely different than the first and second dimensions; the 
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third dimension was, in fact, inversely correlated with the second dimension.  This was 
rationalized by noting that the largest size the minimum dimension can achieve is limited by the 
largest hole in the sieve, and inclusions with smaller third dimensions are more likely to fall 
through the sieve.  Therefore, inclusions with the largest second dimensions are more likely to 
have smaller third dimensions or they would not have made it through the sieve to begin with. 
 
The specific quantitative observations made by GRC about the relative dimensions of the 
anomalies are likely limited to the specific seeds used in this study.  It is not clear if the 
qualitative observations are applicable to the broader class of inclusions in powder metal.  
Further data are needed to determine if this true.  It also remains that additional effort would be 
required in practice to obtain quantitative data on the third dimension of inclusions using the 
HLS process. 
 
Another inherent limitation of the HLS approach to characterizing inclusion size distributions is 
that the inclusions are characterized at the powder stage, before the component is forged into its 
production shape.  GRC (Kantzos et al., 2003) found that seed dimensions in forgings 
(as determined using metallographic sectioning) were significantly different from the original 
seed dimensions as characterized by HLS data, even after compensating for errors introduced by 
the sectioning method (discussed in the following section).  The differences were attributed to 
seeds breaking up and the fragments becoming strung out along the extrusion direction during 
the forging process.  The effective aspect ratios of the seeds in the forging were much larger than 
the aspect ratios of the initial seeds.  Similar observations had been made for natural inclusions 
in an earlier study (Gabb et al., 2000).  Kantzos (2006) indicated that Type I inclusions tend to 
break up more, while Type II inclusions tend to deform more, and that larger inclusions tended to 
break up more. 

 
Calculation of Anomaly Distributions from Sectioning Data 
 
Because seed or inclusion dimensions can be altered by the forging process, it may be preferable 
to characterize these dimensions with measurements taken from the final forged shape.  This can 
be done with metallographic sectioning of the forging.  Metallographic sections can be taken 
along different planes (hoop, radial, axial) in order to determine seed dimensions and shapes in 
each of these planes. 
 
However, this method also has inherent limitations, as Kantzos et al. (2003) has pointed out.  
One limitation is that the metallographic section will not, in general, pass through the maximum 
dimension of the defect, and so the resulting measurement will underestimate the actual size of 
the defect by an unknown amount.  The distribution based on sectioning and the actual 
distribution tend to converge at the largest areas.  Another limitation is that the same defect 
cannot be sectioned along three orthogonal planes, and so it is not possible to know the three-
dimensional aspect ratio of any single defect. 
 
Ghosn et al. (2003) presented a method to address the first limitation by “unfolding” the 
inclusion size distribution from the metallographic sectioning information.  He adapted a 
published scheme to generate a 3D reconstruction of size distributions from 2D sections using an 
Expectation Maximization (EM) algorithm.  The method is most commonly used for spherical 
bodies, but Ghosn also obtained equations for the special case of prolate spheroids of constant 
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shape (a spheroid being an ellipsoid having two equal axes).  Ghosn et al. demonstrated that the 
method worked successfully to predict the actual size distribution of spherical shot peen media 
and -80+100 mesh metal powder from 2D section data; the method was less successful with -270 
mesh metal powder.  They also applied the same methods to the metallographic images of the 
largest seeds (fragmented particles) in forgings, documented in more detail by Kantzos et al. 
(2003).  Evaluation of success was difficult because the “correct” answer was not known 
(the original seeds had severely broken up during forging).  This method has not been 
demonstrated for general ellipsoids. 
 
As noted earlier, the forging process can cause significant fragmentation of defects  
(Kantzos et al., 2003).  As a result, the “defect” observed in a metallographic image may in fact 
be a collection of neighboring defect fragments of varying size, proximity, and orientation.  
Therefore, GRC geometric models of defects in the forging employing an ellipsoidal form 
provide only an average shape reflecting the overall result of the forging process.  
The characteristic length of the major or minor axis of the “ellipse” in the sectioning plane 
generally represents the span of a collection of neighboring fragments, including some semi-
arbitrary criterion for the maximum distance between neighboring particles that should be 
considered constituents of the same “defect.”  In this spirit, the major axis is the longest 
dimension of this particle collection, and the minor axis is the approximate width of the 
collection along a direction orthogonal to the major axis. 
 
This method requires metallographic sampling of relatively large areas in order to generate 
adequate data.  The GRC studies of seeded material involved sampling 3500 mm2 to 10,000 mm2 
of surface area (Kantzos et al., 2004), but they noted that much larger areas would have to be 
sampled for unseeded material due to the significantly lower defect occurrence rates. 
 
Calculation of Anomaly Distributions from Fractography Data 
 
A third possibility (Kantzos et al., 2004) is to determine anomaly distributions from inclusion 
measurements on the fracture surface itself.  These measurements correspond to defects that 
actually caused fracture, not the general population of all defects in the material.  The total 
number of defects thus characterized would generally be much smaller, which would present 
additional statistical challenges.  Dimensional information on other orthogonal planes is 
generally not available. 
 
Fractographic approaches do not give any real indication of how many inclusions were present in 
the tested volume.  It is difficult to extrapolate from the extreme defect size distributions 
obtained from fatigue test coupons to those expected in a turbine rotor or a fleet of turbine rotors. 
 
Kantzos et al. (2004) noted from their seeded studies that the size distribution for crack-initiating 
defects was larger than the initial (HLS) distribution for their seeded material, since fatigue was 
an extreme process that tended to favor the larger defects in the population.  The opposite was 
true for unseeded (relatively clean) material: the size distribution for the crack-initiating defects 
was smaller than the initial HLS size distribution.  The unseeded material was so clean 
(inclusions were so rare) that a large inclusion was unlikely to be found in the coupon volume 
tested even though some large inclusions were present in the original powder. 
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Comparative Remarks 
 
Kantzos et al. (2004) concluded that all three of these methods—HLS, quantitative 
metallography, and quantitative fractography—were useful and capable of quantifying powder 
cleanliness to various degrees.  They suggested that a combination of all three methods was 
desirable, although they did not propose any methods for such a combination.  The HLS method 
is the only method that can provide an accurate size distribution as well as the defect occurrence 
rate.  However, the HLS distribution needs to be adjusted in order to take into account the extent 
of defect fragmentation during forging. 
 
Multiple Anomaly Types 
 
All of these observations and methods are based on the assumption that only one type of defect is 
causing fatigue failure and therefore needs to be characterized.  The cited GRC research did not 
explicitly address the issue of multiple anomaly types.  All work was focused on non-metallic 
inclusions (and artificial seeds that were intended to emulate these natural inclusions).  
The seeded specimens always failed from inclusions (seeds). 
 
Earlier GRC work on unseeded U720 did observe multiple failure modes, including some 
systematic effects that favored one failure mode over another.  Gabb et al. (2000) performed 
unseeded U720 tests at 538C (1000F) and found that strain ratio R = 0 tests predominantly 
(but not always) failed from cracks at elongated clusters of inclusions, while R = -1 tests usually 
failed from cracks emanating from large sheared grains (“grain facet failures”) or at pores, with a 
few inclusion failures also occurring.  The total strain range in the R = 0 tests (0.75%) was 
slightly smaller than the total strain range in the R = -1 tests (0.90%).  No quantitative treatment 
of different failure modes was offered. 
 
Later GRC testing (Gabb et al., 2002) at 650C (1200F), three strain ratios, and a wider variety 
of strain ranges found that unseeded specimens failed at cracks initiated at two different types of 
inclusions as well as micropores.  Micropore-initiated failures appeared to be rare.  
Initiation sites tended to be located at or near the surface in tests at high strain ranges and internal 
for lower strain ranges.  Kantzos et al. (2004) reported that the unseeded fatigue test coupons 
failed from inherent inclusions as well as other flaws such as porosity and grain facets.  
Kantzos (2006) indicated tendencies toward pore failure at lower temperatures and higher strains, 
and towards inclusion failures at high temperatures and lower strains. 
 

2.1.2 Calculation of Fracture Probability 
 
The second major part of the reliability determination is the calculation of the probability of 
fracture, given that a defect does exist.  This part includes several steps, including the 
determination of the initial crack size due to the inclusion, the number of fatigue cycles required 
to form a growing crack at the defect, and the number of fatigue cycles required to grow this 
crack to failure.  The fatigue life can also be influenced by residual stress effects and 
environmental effects. 
 
 



NASA/CR—2011-216977 10 

Determination of the Initial Crack Size 
 
The size and shape of the crack-initiating inclusion must be translated into the size and shape of 
the initial fatigue crack in order to perform a fatigue crack growth (FCG) calculation. 
 
Bonacuse et al. (2002) originally hypothesized that the inclusion with the largest cross-section 
orthogonal to the load would be the most likely to initiate a propagating fatigue crack.  
However, this assumption led to predicted distributions of initial crack area that were 
consistently smaller than what was revealed on the fracture surfaces.  Bonacuse et al. (2006) 
subsequently proposed that the projected area of the inclusion on the plane orthogonal to the load 
might be a better predictor of the inclusion’s crack initiating potential, noting that other 
researchers had come to the same conclusion. 
 
Since the defects are being modeled as arbitrary ellipsoids, their orientation relative to the load 
plane is another important factor in determining the size and shape of the resulting fatigue crack.  
Bonacuse et al. (2002) reported that the extrusion and forging processes tend to orient the 
inclusions along the high strain directions.  In forgings, sections taken from orthogonal directions 
seem to show a preferential orientation in the plane of the forging.  Bonacuse et al. (2002) 
elaborated that there was a correlation between the magnitude of the processing strain and the 
degree of orientation: larger strains lead to more alignment.  In addition, larger inclusions 
seemed to be more likely to orient themselves to the flow direction than smaller inclusions. 
 
Kantzos et al. (2003, 2004) provided a more detailed report, presenting detailed forging maps 
with data indicating that the orientation of the inclusions in the forging was not random, but was 
correlated with the direction and magnitude of the metal forming strains in the forging process.  
Both break-up and orientation effects were stronger in the transition and rim regions of their 
simple disc shapes, where effective forging strains were largest.  They speculated that these 
effects would be more significant in large forgings where the material flow and deformations are 
appreciably larger than in the pancake forgings used in the GRC study. 
 
Detailed studies of these orientation correlations were not performed, so Bonacuse et al. (2006) 
optimized an assumed correlation to fit the available data.  Combining this information with the 
projected area criterion mentioned earlier, Bonacuse et al. (2006) simulations showed reasonable 
success in predicting the distributions of crack-initiating defect sizes observed in fatigue tests. 
 
Gabb et al. (2000) had earlier observed some statistical correlations between smooth specimen 
fatigue life and original location of the specimen within a complex forging shape for unseeded 
material, although the correlation coefficients were relatively low.  It is not clear if these 
correlations might have been due to defect issues (perhaps arising from different forging strains 
at different locations in the forging) or due to base microstructure issues (such as grain size).  
This question was not addressed in the Gabb et al. work. 
 
Most of the failure cracks in the GRC seeded studies initiated at inclusions on the specimen 
surface.  Kantzos et al. (2004) reported that surface initiations frequently favored inclusions that 
were barely sectioned by the surface and whose bulk was mostly contained within the specimen.  
Internal initiations typically occurred at much larger inclusions than surface initiations.  
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This was as expected, due to the much larger volume sampled in the interior compared to the 
surface, and perhaps also because much smaller inclusions in the interior might not initiate 
growing cracks. 
 
Given that defects are being modeled as arbitrarily oriented ellipsoids with three independent 
dimensions, and given that the intersection and/or projection of these ellipsoids with sectioning 
planes, load planes, and external surfaces defines significant area values with direct implications 
for life prediction, it is useful to be able to calculate these areas quickly and accurately.  
Bonacuse (2008) has derived a set of mathematical models for these parameters, including the 
intercepted area of a randomly sectioned ellipsoid, the dimensions and orientation of the 
intercepted ellipse, the area of a randomly oriented sectioned ellipse, the depth and width of a 
randomly oriented sectioned ellipse, and the projected area of a randomly oriented ellipsoid.  
Without these mathematical models, computationally expensive search algorithms would be 
required to compute these parameters, and this might not be feasible for probabilistic simulations 
of fatigue life and component reliability. 
 
Calculation of Crack Formation Life 
 
The nature and location of the initiating defect appears to have a significant impact on crack 
formation life. 
 
Early GRC studies (Gabb et al., 2000) with unseeded test coupons, where 75% of the cracks 
initiated sub-surface, concluded that most tests spent over 90% of life in the initiation phase 
(including both pores and inclusions).  These estimates did not consider the possibility of slower 
FCG rates for embedded crack (in the absence of environmental effects), as discussed further 
below.  This might mean that the formation life fraction was smaller than originally inferred. 
 
More recent GRC seeding studies (Kantzos et al., 2004), where most failures were initiated at the 
surface, observed little or no formation life for surface-connected inclusions.  Crack formation at 
subsurface locations was not studied in detail in this work.  In these seeded tests, the tendency 
for surface initiation was stronger at lower strain ranges and higher R ratios. 
 
Gabb et al. (2002) found that prior exposure at elevated temperatures for extended periods of 
time shifted the failure locations from internal to surface, due to environmental attack on the 
surface.  An increase in total scatter was attributed to the competing failure modes: internal 
initiations at inclusions or large grains (longer lives), or surface initiations at an environment-
affected surface layer (shorter lives).  Proper analysis required identifying and separating these 
two modes. 
 
GRC has not proposed any general physics-based models to predict crack formation life as a 
function of defect size and shape, temperature, strain range, and mean stress.  Gabb et al. (2003) 
developed a non-linear regression model describing the relationship between total fatigue test life 
and a combination of test control parameters (strain range and strain ratio) and defect 
characteristics (mean log inclusion areas and inclusion area densities) for a specific set of test 
results.  However, this model did not differentiate between crack formation life and crack growth 
life. 
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Because crack formation life has not been isolated from crack growth life in GRC analyses, no 
explicit attention has been given to scatter in crack formation life. 
 
Detailed studies of specimen surfaces using a special rotational stage in the scanning electron 
microscope (Telesman et al., 2002, 2006) revealed that cracks were initiated at nearly all 
surface-breaking defects being monitored.  However, not all initiated cracks grew to failure.  
The cracks that did grow to failure often formed at defects with mapped surface sizes that were 
actually smaller than the average of all monitored inclusions.  This was interpreted as evidence 
of an “iceberg” effect: the most deleterious inclusions may be surface-breaking inclusions with 
much larger dimensions beneath the surface, as noted also by Kantzos et al. (2004). 
 
Calculation of Crack Growth Life 
 
The calculation of FCG life is a critical step in prediction of total fatigue life, particularly for 
situations where crack formation life is negligible.  Because inclusions can be very small, the 
early growth of fatigue cracks formed at defects falls into the “small-crack” regime.  One of the 
key issues is whether the growth of small cracks near defects follows the general trends of 
conventional long-crack growth behavior, or exhibits classical “small-crack” effects. 
 
Telesman et al. (2006, 2007) showed crack growth data that, at first, appeared to exhibit classical 
small-crack effects: increased scatter, accelerated growth rates relative to the extrapolated Paris 
line, and growth at nominal K values below the large-crack threshold.  However, much of this 
behavior was characterized as “pop-in”: cracks appeared very quickly, but exhibited decreasing 
da/dN values and often arrested completely.  No quantitative models were proposed by GRC for 
pop-in behavior, but machining residual stresses, crack closure, localized residual stresses due to 
coefficient of thermal expansion mismatch, or highly localized stress concentrations due to 
irregularly shaped inclusions (Kantzos et al., 2004) were offered as potential explanations. 
 
When Telesman et al. screened out this crack growth during the first 250 cycles, some of the 
apparent “small-crack” trends in the data vanished.  The remaining data often agreed with the 
large-crack Paris line.  However, some data still fell below the large-crack threshold, and some 
data (especially at R ~ 0) exhibited slightly faster growth than the Paris line.  It was speculated 
that this might be due to reduced crack closure, since FCG rates were still bounded by high-R 
large-crack trend lines.  Further study of the data is needed to determine how well the small-
crack behavior is described by large-crack models. 
 
As noted earlier, Telesman et al. (2002, 2007) and Kantzos et al. (2004) reported that most 
monitored inclusions initiated cracks for all test conditions, but only a few cracks grew to failure.  
It is not clear why some cracks arrest and some grow.  The relative fraction of active inclusions 
was higher at higher strain ranges and higher R-ratios. 
 
Relatively little attention was given to large-crack growth, aside from the generation of basic 
property data.  Telesman et al. (2006) used a Walker model to correlate 1200°F long-crack FCG 
data generated with Kb-bar (surface crack) specimens at four negative and three positive R-ratios.  
Different Walker exponents were used at positive vs. negative stress ratios.  Data were only 
shown at R = 0.05, 0.5, -0.25, and -1.  No attention was given to scatter in large crack growth 
rates, since this is not usually a significant source of variability in this problem. 
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Bonacuse et al. (2003) reported a life prediction study based on simulations of inclusions with 
random size and shape distributions.  Predicted seed maps (including orientation and intercepted 
surface areas) generally agreed with experimental observations.  Fatigue life was calculated 
based on fatigue crack growth with no threshold or initiation considerations.  The ten largest 
surface connected inclusions and all embedded inclusions in the simulated specimens were 
considered, with the lowest calculated life assumed to give the specimen life.  Room temperature 
air FCG properties were used for embedded cracks, while elevated temperature air properties 
were used for surface cracks (see remarks below about environmental effects).  The simulations 
exhibited mixed success in predicting observed behavior: conservative in some cases, 
non-conservative in others, and generally underestimating the observed life scatter. 
 
Predictions of FCG lives for the seeded tests (for both surface and internal cracks) based on large 
crack growth rate models (assuming negligible crack formation life, and taking the size of the 
defect where the failure crack originated as the initial crack size) met with mixed success in work 
reported by Telesman et al. (2006).  Predictions were reasonably accurate in some cases 
(especially for some larger seeds at R = 0), but very conservative in other cases.  
These calculations did not address small-crack behavior (including pop-in, decreasing da/dN, or 
crack arrest), machining residual stresses, or environmental effects.  These latter two effects are 
discussed in subsequent sections. 
 
Ghosn et al. (2005) documented some statistical analysis of the FCG data and used the analysis 
to perform a Monte Carlo simulation study.  The number and size of the inclusions in each 
simulated bar was randomly generated from appropriate distributions.  They lumped small-crack 
and large-crack data together and used simple linear Paris relationships to model the data.  
They developed empirical equations to describe the percentages of cracks with zero or negative 
growth as a function of the maximum stress.  They also developed statistical expressions for the 
deviations from the Paris line, which were larger at smaller Walker-corrected K values 
(consistent with smaller crack sizes).  They presented an error analysis to claim that 
measurement errors were not a significant source of uncertainty.  The simulations were generally 
successful at reproducing the overall trends in the observed life behavior, although some details 
were not satisfactorily predicted. 
 
Residual Stress Effects 
 
GRC has given considerable attention to surface residual stress effects in P/M alloys, but has not 
studied bulk residual stress effects (arising, for example, from forging or heat treating). 
 

Effects of Residual Stress on Fatigue Life 
 
Telesman et al. (2007) observed surface crack initiation very early in low-cycle fatigue (LCF) 
life at 1200°F, R = 0, and various strain ranges, for both as-machined and one shot-peened 
condition.  Since the significant compressive residual stress induced by the shot peening (SP) did 
not delay surface crack initiation, but did increase total life for some test conditions, they 
concluded that residual stress affects crack growth rates, but not crack formation lifetimes. 
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Barrie et al. (2008) studied the effects of SP on fatigue behavior at 427C and 650C for multiple 
strain ranges from 0.6% to 1.2% and for strain ratios of -1, 0, and 0.5.  An initial screening study 
of different SP conditions found that all SP conditions considered significantly improved life for 
the 54 μm seeded material, by shifting the failure from surface to interior.  However, only SP to 
high intensity resulted in fatigue life improvement for the 122 μm seeded material, probably 
because the depth of the residual compressive stress was on the same order as the seed sizes. 

 
Further studies by Barrie et al. (2008) with the selected high intensity/low coverage SP 
conditions (8A/200%) found some improvements in fatigue life at low strain ranges and low 
strain ratios.  However, no improvements were observed at Rε = 0.5 or larger strain ranges.  
The larger strain ranges were observed to cause significant residual stress relaxation during the 
test.  No explanation was given for the lack of effect at high strain ratio, but this would be 
consistent with a FCG explanation since the high R values would counteract some of the effects 
of the compressive residual stress from a crack closure standpoint.  Barrie et al. did not study 
initiation or growth phases separately. 
 

Relaxation of Residual Stresses 
 
Residual stresses induced by shot peening or other surface enhancement methods can relax 
during thermal exposure and/or fatigue cycling.   
 
Gabb et al. (2004) investigated thermal exposure effects in retired T700 disks manufactured from 
P/M alloy René 95.  Residual stresses were measured in the as-received (full lifetime) disks, and 
then following thermal exposure at 593°C, 650°C, and 704°C for 1 hr, 24 hr, and 500 hr.  
Significant relaxation occurred.  An empirical regression model was developed to describe the 
effects of T, t, initial cold work, and initial residual stress on stress relaxation and cold work 
relaxation.  Stress relaxation was accentuated for combinations of high temperature with long 
time, as well as combinations of high initial compressive residual stress with high temperature, 
time, or initial cold work.  The equations are not quantitatively predictive for other materials or 
conditions. Limited tensile specimen testing of mechanical stress relaxation with time and 
temperature found qualitatively similar trends, but no quantitative correlations were established. 

 
Telesman et al. (2007) presented limited data on measurements of shot peening (8A, 200%) 
residual stress on specimens before and after LCF testing at 1200°F (650C), R = 0, Δε = 0.8%.  
Significant residual stress relaxation occurred.  Another limited data set showed nearly complete 
relaxation of low plasticity burnishing (LPB) residual stress following LCF testing at 1200°F, R 
= 0.5, and Δε = 0.8%, although the conditions were cited as being “overly aggressive” to 
evaluate the effect of LPB on LCF life.  One data set showed significant relaxation of LPB 
residual stress following 17 hrs at 1200°F (no fatigue cycling), suggesting that the relaxation 
observed in the LCF tests may have been primarily due to thermal mechanisms.  LCF lifetimes 
with LPB were similar to untreated lifetimes.  No models for residual stress relaxation were 
proposed. 
 
Kantzos (2006) has presented data showing the effect of LCF cycling at 1200°F, R = 0,  
Δε = 0.8% on SP residual stress for four different shot peening intensity-coverage combinations.  
All four conditions exhibited significant relaxation.  No models were proposed. 
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Machining Residual Stresses 
 
Telesman et al. (2002, 2006) speculated that low stress grind machining residual stresses 
(which are compressive on the surface) might be related to observed microcrack behavior 
(decreasing crack growth rates and crack arrest), although no specific mechanisms were 
proposed.  Simple predictions (neglecting residual stresses) of surface crack growth rates at R = 0, 
Δε = 0.6% significantly (10×) overpredicted observed crack growth rates, but agreement was 
good at Δε = 0.8%.  Telesman et al. (2002) noted that the higher strain ranges created enough 
plasticity to wash out the shallow machining residual stresses.  Limited measurements of surface 
and near-surface residual stresses showed some relaxation in initial (machining-induced) residual 
stresses after only 250 LCF cycles.  Limited test data were also presented showing that a single 
1% overload increased the FCG rate and decreased the fatigue life for specimens with large 
(T64) defects.  It was speculated that this effect might be due to residual stress reduction, but 
also perhaps due to potential inclusion debonding.  Single 1.2% overloads did not affect the 
fatigue life for specimens with smaller 54 μm inclusions.  Another group of specimens was 
electropolished to remove residual stresses, but the electropolishing (EP) step also preferentially 
removed matrix material surrounding the inclusions.  The EP step resulted in a significant 
reduction in LCF life (but with a smaller number of inclusions initiating cracks).  Another series 
of tests with thermal exposure in vacuum to reduce residual stress also reduced the fatigue life. 
 
Environmental Effects 
 
As noted earlier, Gabb et al. (2002) observed that prior exposure of unseeded fatigue specimens 
to elevated temperatures (650°C to 705°C) for extended periods of time (100 hr to over 1000 hr) 
caused a significant reduction in total fatigue life (up to 70 percent) and increased the scatter in 
life compared to unexposed levels.  Fatigue tests were conducted at 650°C.  The differences were 
attributed to a shift in failure mode from subsurface to surface initiation due to environmental 
attack on the surface (i.e., a significant decrease in surface initiation life due to environmental 
effects, not related to surface inclusions).  Unexposed fatigue tests at 704°C and a 650°C fatigue 
test with a 1 minute cyclic dwell period also exhibited surface failure modes consistent with the 
exposed tests. 
 
Telesman et al. (2006) noted that proper modeling of subsurface crack growth required crack 
growth models for vacuum conditions (in the absence of environmental effects).  A survey of the 
literature found only isolated vacuum FCG data (Paris regime) at high temperature (600°C and 
700°C), but these data generally agreed with available room temperature air data (FCG rates 
were generally slower than elevated temperature air data).  The possibility of using room 
temperature air data to model surface cracks was suggested. 
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2.2 A Summary of Current DARWIN Capabilities Relevant to P/M Lifing 
 
SwRI has been actively developing technology and software to support probabilistic damage 
tolerance analysis of gas turbine engine rotors since 1995.  One of the key outcomes of this work 
has been the DARWIN (Design Assessment of Reliability With INspection) computer code 
(Millwater et al., 2000; Leverant et al., 2004; McClung et al., 2004a; McClung et al., 2009).  
DARWIN integrates finite element models and stress analysis results, fracture mechanics models, 
material anomaly data, probability of anomaly detection, and uncertain inspection schedules with 
a user-friendly graphical user interface (GUI) to determine the probability-of-fracture of a 
high-energy rotating component as a function of operating cycles with and without inspections. 
 
The SwRI work was originally motivated by an uncontained rotor fracture incident at Sioux City, 
Iowa, in 1989.  As a result of this incident, the Federal Aviation Administration (FAA) requested 
that the aircraft engine industry, through the Aerospace Industries Association (AIA) Rotor 
Integrity Sub-Committee (RISC), review available techniques to determine whether a damage 
tolerance approach could be introduced to produce a reduction in the rate of uncontained rotor 
events.  During the development of this probabilistic damage tolerance approach, it became 
apparent to RISC that the capabilities and effectiveness of the emerging technology could be 
significantly enhanced by further research and development.  SwRI, in partnership with four 
major U.S. engine manufacturers and with guidance from RISC, proposed and was awarded a 
series of FAA grants beginning in 1995 to address identified shortfalls in technology and data. 
 
Initial DARWIN capabilities were focused on the hard alpha titanium problem, which had 
caused the Sioux City incident.  A general framework was established to address inherent 
material defects that could occur anywhere in an axisymmetric body, as described by a 2D finite 
element model.  Another notable uncontained rotor incident in Pensacola, Florida, in 1996, was 
caused by surface damage at machined circular holes, and as a result, a second thrust of 
DARWIN development emerged.  A second general framework was established to address 
induced material defects arising during manufacturing or maintenance processes, focusing on 
damage occurring at the component surface, and incorporating 3D finite element models. 
 
With direct guidance from the FAA and the OEM Steering Committee, DARWIN has been 
tailored to address specific advisory circulars issued by the FAA, including AC 33.14-1 for 
titanium hard alpha, AC 33.70-2 on circular holes in all materials, and the more general AC 
33.70-1 for damage tolerance of all engine life-limited parts.  The FAA has indicated that 
DARWIN is an acceptable means of compliance with these advisory circulars, and DARWIN 
has been employed in the formal FAA certification process for numerous engines. 
 
The FAA also directed that some basic DARWIN capabilities be developed to address 
superalloys with high anomaly occurrence rates, including powder metallurgy alloys.  
Some capabilities have already been implemented in DARWIN, although this work has been 
limited due to other, more pressing FAA and RISC priorities. 
 
The purpose of this document is to summarize the existing capabilities in DARWIN that are 
relevant to the P/M lifing problem.  The document follows the general outline of the summary of 
research in P/M lifing conducted at NASA Glenn Research Center. 
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2.2.1  Determination of Anomaly Distributions 
 
DARWIN currently has no capability to derive or generate anomaly distributions.  A limited 
number of distributions are provided in a special DARWIN library for specific anomaly types: 
hard alpha titanium anomalies (as a function of material vintage and billet/forging inspection 
sensitivity), and surface damage at machined circular holes.  The user has the option of providing 
additional anomaly distributions as files in predetermined formats that DARWIN can read.  
The user cannot modify these distributions inside DARWIN itself. 
 
For hard alpha titanium, the anomalies are assumed to have a spherical shape.  The probability 
distribution of these anomalies is described in a two column format consisting of anomaly area 
and associated number of anomalies (exceedance format).  For general materials such as P/M 
alloys, the anomalies are assumed to have an ellipsoidal shape. The probability distribution of 
these anomalies is based on the ellipsoid major axis (exceedance format), anomaly aspect ratios 
(normal or lognormal distributions), and three anomaly orientation angles (uniform or normal 
distributions). 
 

2.2.2  Calculation of Fracture Probability 
 
Determination of the Initial Crack Size 
 
For titanium alloys with hard alpha anomalies, the initial crack dimensions are based on the 
anomaly area described in the anomaly distribution. The anomaly area is converted to crack 
dimensions assuming that the initial crack has a circular shape for embedded cracks, a half-
circular shape for surface cracks, and a quarter-circular shape for corner cracks.  For general 
materials, the initial crack dimensions are based on either the intersection or projection of the 3D 
anomaly with the fracture plane.  Similar as for titanium hard alpha, the anomaly dimensions are 
adjusted when the crack is located near a surface or corner of a component.  In addition, an initial 
or “production” inspection can be applied to general materials to remove components with 
anomalies that are detected prior to placement in service (this inspection cannot be applied to 
titanium materials, because the anomaly distributions for these materials were calibrated to 
components that had already been placed in service). 
 
Calculation of Crack Formation Life 
 
DARWIN has no built-in models to calculate the cycles required to form a fatigue crack at a 
material anomaly.  However, DARWIN does facilitate user-provided crack formation models. 
A Crack Formation Module is provided that allows users to link their own specific crack 
formation algorithms with DARWIN, as shown in Figure 1.  The Crack Formation Module and 
associated data are developed and maintained by the individual user.  During run time, DARWIN 
communicates with the Crack Formation Module to obtain the crack formation life associated 
with an anomaly having specified temperature and applied stress values. 
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Figure 1.  Crack formation computations are performed via a  

user-supplied crack formation module. 

 
The Crack Formation Module is executed as a separate program that receives input from 
DARWIN. The following data are currently passed from DARWIN to the Crack Formation 
Module: global coordinates (r, z, theta), distance to the nearest free surface of the fracture 
mechanics plate, size of anomaly (a, c) in crack plane and orientation of plane, six components 
of stress at the anomaly location for each load pair, relaxed stresses (if shakedown is performed 
in DARWIN), and temperature at the anomaly location for each stress pair.  The maximum 
temperature of each stress pair is provided to the formation module, and the crack plane is 
limited to hoop, axial, and radial stress planes. These data are used by the Crack Formation 
Module for crack formation life prediction. The following data are passed from the Crack 
Formation Module to DARWIN: crack formation life for entire load history, and crack size at 
end of crack formation life (a, c). 
 
Linking two independent computer programs together is a nontrivial task, particularly when 
multiple platforms and associated operating systems must be supported. The approach used is to 
create a third program that is linked separately with the other two programs. A formation 
Application Program Interface (API) was developed for this purpose, in which DARWIN and the 
Formation API are compiled as stand-alone programs. The Crack Formation Module is also 
compiled as a stand-alone program. During run time, data is passed between DARWIN and the 
Crack Formation Module via the Formation API. This approach does not require the sharing of 
source code, nor does it require the creation of ASCII files to pass data. In the future, the 
interface between DARWIN and the Crack Formation Module can easily be expanded to include 
additional variables associated with enhanced crack formation life models. 
 
Calculation of Crack Growth Life 
 
DARWIN has a comprehensive capability for fatigue crack growth analysis.  The Flight_Life 
fracture mechanics module contains libraries of stress intensity factor (SIF) solutions and 
multiple models for FCG rate calculations.  SIF solutions include original univariant and/or 
bivariant weight function solutions for elliptical embedded cracks, semi-elliptical surface cracks, 
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quarter-elliptical corner cracks, and straight through cracks in plates or at holes (Enright et al. 
2003; McClung et al., 2004b; Lee et al., 2008).  Available crack growth equations include Paris, 
bilinear Paris, sigmoidal, hyperbolic sine, and the NASGRO 4.0 equation, as well as general 
capabilities to accommodate tabular data.  Available mean stress models include Walker and 
closure models, as well as Walker interpolation.  Interpolation of crack growth rates at different 
temperatures is also available.  Scatter or uncertainty in calculated FCG rates is described by a 
life scatter factor (a log-normal distribution with a user-specified coefficient of variation) that is 
uniformly applied at all crack sizes. 
 
DARWIN currently has no explicit treatment of small-crack behavior, except that the standard 
NASGRO crack growth equation in DARWIN does include a size-dependent threshold term that 
reduces Kth at very small crack sizes, following the El Haddad functional form.  
Some investigations of alternative small-crack formulations are underway at SwRI in the current 
FAA grant, and this could potentially lead to a new small-crack model being implemented in 
DARWIN. 
 
Static and fatigue testing of coupons with either artificial or natural hard alpha defects gave 
results indicating the potential influence of local residual stresses on fracture behavior 
(McKeighan et al., 2001).  Experimental measurements of the coefficient of thermal expansion 
of the hard alpha (titanium nitride) inclusion and the base titanium alloy indicated a large enough 
difference to induce significant local residual stresses under some conditions (Laz et al., 2003).  
Idealized models were developed to estimate these residual stress fields and their effect on crack 
initiation and growth behavior, and they agreed satisfactorily with the observed cracking.  
These models have not been implemented in DARWIN, however. 
 
Residual Stress Effects 
 
DARWIN currently has a basic capability to superimpose a user-provided tabular residual stress 
gradient with the 2D finite element model stress results.  The resulting combined stress gradient 
is used to calculate K and R; the superposition of the residual stress does not change K but it 
does change R, which will change the predicted FCG rate.  Special optimum point spacing 
algorithms facilitate the accurate and efficient superposition of stress gradients with significantly 
different length scales. 
 
This capability is currently limited to semi-elliptical surface cracks with univariant stress 
gradients in 2D axisymmetric models.  Work is planned under the current FAA grant to extend 
the superposition capability to some additional crack types and also to 3D finite element models. 
 
DARWIN currently has no capability to calculate relaxation or redistribution of residual stresses 
due to thermal exposure, mechanical loading, fatigue cycling, or crack growth, and no facilities 
are provided to allow the user to update the residual stress inputs as cycling proceeds.  
A comprehensive literature review of this topic was conducted under one of the FAA grants and 
has been published (McClung, 2007). 
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Environmental Effects 
 
DARWIN currently permits the user to supply different crack growth properties  
(even different crack growth equation types) for embedded cracks versus all other crack types 
(which are all surface-breaking).  This was specifically designed to facilitate the specification of 
properties obtained under vacuum conditions for embedded cracks, while other crack types 
would use customary air properties.   
 
The earlier FAA grants led by SwRI also generated fatigue crack growth properties under 
appropriate vacuum conditions at relevant temperatures for several selected rotor alloys, both 
titanium and nickel-based superalloys (McClung et al., 1999).  This effort included the 
generation of vacuum FCG properties for U720 using material provided by NASA GRC 
(material identical to that used in the GRC studies of P/M lifing).  U720 data were generated 
using Kb-bar (surface crack) specimens at 800F for R = 0.05 and R = 0.5.  These data have been 
provided to GRC, but they have not yet been published. 
 
DARWIN includes the ability to extract from finite element models not only the full stress tensor 
throughout the model, but also the temperature distributions at each time point.  DARWIN also 
permits the user to provide different crack growth properties at different temperatures.  
During complex thermal-mechanical cycling, DARWIN currently calculates FCG rates using the 
properties at the temperature corresponding to the time point at which the maximum stress in that 
particular load pair (cycle) occurs, performing temperature interpolation as needed.  Work is 
underway in the current FAA grant to implement new capabilities for time-dependent crack 
growth (e.g., fatigue cycling with dwell periods) as well as more advanced thermal-mechanical 
fatigue crack growth algorithms. 
 
Reliability Calculations 

 

Anomalies in gas turbine engine materials can lead to fracture.  The fracture event is dependent 
on (1) the presence of an anomaly, and (2) the formation and growth of a crack that exceeds the 
fracture toughness of the material before the design life has been reached.  The occurrence 
probability of an anomaly P(dj) can be measured by counting the number of anomalies of various 
sizes on the surface or within the volume of a component. P(dj) is typically modeled as a Poisson 
point process (Roth, 1998; Haldar and Mahadevan, 2000): 

 

     exp
!

j

i i
j i i

V
P d V

j


   (1)

The likelihood of fracture failure can be estimated using fatigue crack growth modeling.  
Since this value is dependent on the presence of an anomaly of a specified initial size, it is 
commonly expressed as a conditional probability  P F d , the probability of fracture given that an 

anomaly is present.  P F d  is dependent on a number of random variables related to the applied 

stress values and the fatigue nucleation and growth processes (Wu et al., 2002). 
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The occurrence of an anomaly in a component is a relatively rare event for some materials, such 
as hard alpha in titanium (Aerospace Industries Association Rotor Integrity Subcommittee, 1997; 
Leverant et al., 2003).  For these materials, the probability of more than one anomaly is assumed 
to be negligible (Wu et al., 2002).  The probability of fracture at a specified location pi is 
therefore based on the occurrence of a single rare anomaly  1P d and the probability of fracture at 

location i given that a single anomaly is present  1iP F d : 

 

   1 1i ip P F d P d  (2)

On the other hand, components made from some rotor-grade alloy materials  
(including P/M alloys) may contain hundreds or even thousands of anomalies.  For these 
multiple anomaly materials, the conditional probability  P F d  is dependent on the number of 

anomalies present, and is expressed as  i jP F d .  Since cracks can form at the location of any 

anomaly, the failure of the component can be considered as a weakest-link (series) system 
consisting of the fracture failure associated with each discrete number of anomalies. 
For conservative risk estimates,  i jP F d  is set to the maximum probability of fracture 

associated with any one of the j anomalies present.  The resulting system model is expressed as 
(Enright and Huyse, 2006): 

 

   1 1
j

i j i jP F d P F d    
 (3)

The influence of the number of anomalies j on  i jP F d  is illustrated conceptually in Figure 2.  

The anomaly occurrence probability is also influenced by the number of anomalies in a 
component.  This relationship is reflected in the Poisson model of Eqn. (1).  The dependence of 

 i jP F d  and  jP d  on the number of anomalies j is shown conceptually in Figure 3.  

The members in Figure 3 represent the discrete number of anomalies that could be present in a 
given component which are events that have a mutually exclusive relationship (i.e., it is not 
possible for a selected component to have only two anomalies and only three anomalies 
simultaneously). ip  is equal to the sum of the failure probabilities associated with each discrete 
number of anomalies (Hoyland and Rausand, 1994).  To obtain ip , Eqns. (1) and (3) are 
substituted into Eqn. (2) for each member and summed over the total number of members: 
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Figure 2.  The conditional probability of fracture failure  P F d of  

multiple anomaly materials is dependent on the number of anomalies j  
at a specified location in the component. 
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Figure 3.  For multiple anomaly materials, both the probability of fracture  

given an anomaly  i jP F d  and the anomaly occurrence probability  1P d  

are dependent on the number of anomalies present. 
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Eqn. (4) requires specification of the number of anomalies n.  It is shown in Enright et al. (2005) 
that Eqn. (4) reduces to: 

 

 11 expi i i ip V P F d       (5)

Note that Eqn. (5) is based on the average number of anomalies present at location i ( i iV  ). 
 

The probability of fracture is also dependent on the location of an anomaly within a component.  
The component is often discretized into a number of subregions called zones, and the probability 
of fracture is assessed for anomalies located within each zone (McClung et al., 2004a).  
Since component failure occurs when there is a failure within any zone, the component is 
modeled as a series system of zones with a probability of fracture that can be expressed as: 
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If multiple anomalies are present in each zone, pi can be estimated for each zone using Eqn. (5).  
Substitution of Eqn. (5) into Eqn. (6) yields the following expression for multiple anomalies at 
multiple locations (Enright and Huyse, 2006): 
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
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Multiple anomaly types may also be present in one or more regions of a component.  
The multiple anomaly types can be modeled as additional members of the series system of zones. 
This is illustrated conceptually in Figure 4, where it is shown that components with multiple 
anomaly types and locations can be modeled using several nested series systems to represent the 
relationship among the various failure events. 
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Figure 4.  For components with multiple anomalies of multiple types at multiple locations, 
the probability of failure can be modeled using several nested series systems  

to represent the various failure events. 
 

Several sampling-based probabilistic analysis methods are used in DARWIN to predict the life 
of disks subjected to periodic inspection.  Monte Carlo simulation provides accurate results 
(the accuracy is dependent on the failure probability, confidence interval, and number of random 
samples) but is relatively inefficient because the failure limit state must evaluated for each 
random sample using a fatigue crack growth algorithm. A method called a life approximation 
function (LAF) creates deterministic life and grown area arrays for a family of initial anomalies. 
During Monte Carlo simulation, the failure limit state is evaluated for each random sample using 
values interpolated from the deterministic arrays, thereby improving computational efficiency.  
Another method referred to as importance sampling (IS) focuses analysis on the initial conditions 
(anomaly size and other random variables) that would result in lives shorter than the specified 
design life.  This approach reduces the size of the analysis region and is significantly more 
efficient than Monte Carlo simulation.  However, it is currently limited to 2D anomalies and 
does not provide treatment for crack formation life. 
 
Previous DARWIN versions required the user to specify the dimensions and orientation of the 
fracture mechanics model (rectangular plate) that is superimposed on the finite element model 
geometry.  To reduce the bias introduced by individual users, an automated fracture model called 
“auto-plate” was recently developed that automatically identifies the optimum dimensions and 
orientation of the fracture mechanics model at a user-specified location.  A new feature to 
display life contours for 2D axisymmetric finite element models was also recently developed that 
automatically places an anomaly at each of the nodes in the finite element model, generates a 
fracture model at each anomaly location, and computes the fatigue crack growth (FCG) lifetime 
at each location. The resulting family of calculated life results is displayed in the GUI using 
conventional contouring methods.  Future development will be focused on automatic generation 
of fracture risk contours based on the recently developed auto-plate and life contours capabilities. 
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3.0 ALGORITHM DEVELOPMENT 
 
The critical reviews of accomplishments and existing capabilities in the GRC methods/models 
and the SwRI DARWIN software identified a number of significant technology gaps.  
Addressing all of these technology gaps was always understood to be well beyond the scope of 
this initial effort.  Instead, the primary intended outcome of this initial effort was the 
development of a program plan for further research, and that program plan is provided in the 
later Section 4.0.  However, it was possible to perform some new algorithm development under 
the current project, and the results of these activities are documented in the following 
subsections.   
 
New algorithm development was conducted in three areas.  First, a methodology for estimating 
anomaly distributions for materials in which multiple anomaly types are operative was developed 
and verified.  Second, an unfolding algorithm to estimate the dimensions and orientations of 3D 
spheroids based on 2D sectioning measurements was implemented and investigated.  Third, the 
behavior of small fatigue cracks in U720 tests conducted by GRC was investigated, and an 
existing model to predict this small-crack behavior from large-crack growth rates was evaluated. 
 

3.1 Algorithms for Multiple Anomaly Types 
 

3.1.1 Introduction 
 

As noted earlier in the Status Summary section, all of the GRC work developing methods to 
determine anomaly distributions was based on the assumption that only one type of defect is 
causing fatigue failure.  However, other GRC investigations with unseeded U720 specimens did 
observe multiple failure modes due to multiple anomaly types, including inclusions and pores.  
Therefore, in order to address this technology gap, additional work was undertaken under the 
current project to develop methods for generating anomaly distributions when multiple anomaly 
types are operative.   
 
Prior to the current project, SwRI performed work for the Air Force Research Laboratory 
(AFRL) investigating multiple fatigue failure modes in a representative nickel-based superalloy, 
IN-100 (McClung and Enright, 2009).  As part of this work for AFRL, SwRI developed a 
preliminary method to treat multiple anomaly types.  However, this preliminary method had 
several limitations.  Under the current project, SwRI conducted additional research to develop a 
more rigorous treatment, using the IN-100 data from the AFRL effort to demonstrate the new 
method.  That new work is described in this section. 
 
The probability of failure of a component with multiple anomaly types can be predicted using 
established system reliability methods provided that the failure probabilities associated with 
individual anomaly types are known (Thoft-Christensen and Murotsu, 1986; Hoyland and 
Rausand, 1994; Enright and Frangopol, 1998; Melchers, 1999; Enright and Huyse, 2006).  If test 
data are available for components containing a single anomaly of a single type, they can be used 
to construct probability density function distributions (PDFs) describing the likelihood of fatigue 
failure versus flight cycles.  These PDFs can be transformed to predict PDFs of components 
containing more than one anomaly of a single type by considering each of the anomalies as a 
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single member of a series system of anomalies. If a material contains more than one type of 
anomaly, it is usually impractical (if not impossible) to prepare test specimens with a single type 
of naturally occurring anomaly.  When the test specimens contain multiple types of anomalies, it 
may be difficult to accurately estimate the failure probabilities associated with the individual 
anomaly types, even when component failures can be traced to individual anomaly types.  This is 
due to the potential overlap among failure of different anomaly types that is not captured by 
system-level testing, the so-called problem of competing risks. 
 
One of the primary challenges associated with modeling materials with multiple types of 
anomalies is that the test specimens typically contain multiple types of anomalies.  If the lives 
associated with individual anomaly types cannot be characterized from the test data, then it 
becomes impossible to develop nucleation and growth models for each anomaly type that are 
required for the system reliability models.  A review of failure data for a nickel-based superalloy 
provided by the Air Force Research Laboratory (Jha et al., 2008) revealed that the overlap 
among the failure modes for various anomaly types and locations can be significant for some 
engine materials (the extent of this overlap is presented later in this section).  Since all of the life 
models are eventually based on test specimen data, and test specimens for this class of materials 
commonly contain multiple types of anomalies, it became essential to identify and demonstrate a 
method to accurately quantify the lives associated with individual anomaly types. 

 
If the failures of different anomaly types are independent and sufficient failure data are available, 
the marginal cumulative distribution functions (CDFs) associated with them can be estimated 
using nonparametric statistical models such as Kaplan-Meier (1958), Nelson (1972), and 
Aalan (1978), among others.  The Kaplan-Meier approach is most commonly used.  It is based 
on the widely accepted theorem of conditional probability (Ang and Tang, 1975), and is even 
included in some statistical software.  When derived in maximum likelihood estimator format, it 
can be expressed as an asymptotic normal distribution with quantifiable confidence bounds 
(Hoyland and Rausand, 1994).  It is restricted to systems with independent failure modes, an 
assumption that may be difficult to test in practice (Pepe and Mori, 1993).  However, this may 
become less of an issue as new methods emerge for assessing the dependence among failure 
modes (e.g., Crowder, 1997).  Some researchers have noted that in some cases it may lead to 
overly conservative risk estimates when the survivability estimates are converted to CDF 
predictions (Gaynor et al., 1993). 
 
It is well known that correlation among failure modes can have a substantial influence on system 
reliability predictions (Thoft-Christensen and Murotsu, 1986; Enright and Frangopol, 1998; 
Melchers, 1999).  Researchers have reported that failure mode correlation also can have a 
substantial influence on survival function estimates for the problem of competing risks 
(Peterson, 1976; Crowder, 1991).  To quantify the extent of this influence, several models have 
been developed that establish the upper and lower bounds associated with the range of 
correlation among the failure modes (Peterson, 1976; Slud and Rubinstein, 1983; Klein and 
Moeschberger, 1988; Zheng and Klein, 1995).  In addition, many new models are emerging for 
the prediction of the marginal failure densities that are not restricted to independent failure 
modes (Moeschberger and David, 1974; Moeschberger and Klein, 1995; Chen et al., 2008; 
Cai and Prentice, 1995).  Specialized models have also been developed to provide treatment of 
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competing risks for sequential failures (Dignam et al., 2007) and parallel systems (Tan, 2007) as 
well. 
 
Once the failure probabilities associated with the individual anomaly types are known, they can 
be used to calibrate probabilistic models for each anomaly type.  The resulting calibrated 
probabilistic models can then be used to predict the behavior of components with different 
numbers and types of anomalies. 

 
3.1.2 Estimating Marginal Probability Densities from  

Component Failure Data 
 

The conditional probability of failure  1iP F d associated with a single anomaly can be estimated 

from test specimens containing single anomalies.  The probability of failure associated with 
multiple anomalies pi can then be obtained by inserting  1iP F d  in Eqn. (5).  However, if the test 

specimens contain multiple anomalies, the results are provided in terms of pi.  
Reliability predictions based on these test results are only valid for components with exactly the 
same number of anomalies associated with the test specimens.  To estimate risk for different 
numbers of anomalies, the test results can be converted to conditional probability format by 
solving Eqn. (5) for  1iP F d  and applying the values of pi and i iV  associated with the test: 

 

   1

1
ln 1i i

i i

P F d p
V


   (8)

 
The conditional probability density associated with  1iP F d  is referred to herein as a 

“parent distribution” because it represents life values without the influence of multiple anomalies.  
The mean life value associated with the parent distribution may be significantly greater than the 
mean of the measured life values of specimens containing multiple anomalies, particularly when 
the number of anomalies is large. 

 
For components with more than one type of anomaly, the above procedure can be performed 
separately for test specimens each containing a single anomaly type.  If test data are available 
only for specimens containing multiple anomalies of multiple types, then the test results are an 
expression of pF  (Eqn. (7)) rather than pi (Eqn. (5)).  In this situation, each component test 
represents the entire system of multiple anomaly types/locations as well as the multiple 
anomalies subsystems associated with each.  If the failure of components with multiple 
anomalies can be traced to specific anomaly types, then the pi values can be estimated using the 
Kaplan-Meier (1958) method.  The approach is illustrated in the following example. 

 
Consider the fictitious component indicated in Table 1 with two types of anomalies (types A and 
B) that can form growing cracks which can lead to fracture failure of the component.  The 
component has a volume of 1 mm3 and contains an average of 10 and 100 anomalies of type A 
and B, respectively.  For each anomaly type, the total fatigue life given the presence of a single 
anomaly of a single type (parent life) is modeled as a lognormal random variable with the main 
descriptors (median and coefficient of variation (COV)) indicated in Table 1. 
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Table 1.  Anomaly Parameters for Example Component  
Containing Two Types of Anomalies 

 

Anomaly 
Type 

Anomaly Rate 
(1/mm3) 

Total Life Given a Single Anomaly  
of a Single Type (Parent Life) 

Median COV Dist 

A 10 1000 0.3 Lognormal 
B 100 2000 0.5 Lognormal 

 
 
The analytical probability of failure cumulative distribution functions (CDFs) associated with the 
life distributions of the parent total life and multiple anomalies of a single type are shown in 
Figure 5.  Also shown is the probability of failure of the example component containing multiple 
anomalies of type A and B, computed analytically using Eqn. (7).  This figure illustrates the risk 
prediction approach of components with multiple anomaly types when the parent lives are 
known. 
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Figure 5.  Analytical probability of failure values associated with  
single and multiple anomalies of a single type for the  

example component containing multiple anomaly types. 
 

The probability of failure of the example component containing multiple anomaly types can also 
be obtained using numerical simulation.  1000 simulated specimens containing multiple 
anomalies of each anomaly type were obtained using Monte Carlo simulation, indicated in 
Table 2.  The failure time of each component (the minimum life associated with anomaly types A 
and B) was recorded along with the anomaly type responsible for the failure. 
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Table 2.  Simulated Failure of Example Component with Two Types of Anomalies 
 

Simulated 
Specimen 

Cycles to Failure Failure Data 
A B min(A,B) A B AUB 

1 607 648 607 607 — 607 
2 492 501 492 492 — 492 
3 633 566 566 — 566 566 
4 488 720 488 488 — 488 
5 483 642 483 483 — 483 
7 803 664 664 - 664 664 
8 488 508 488 488 — 488 
— — — — — — — 
998 567 534 534 - 534 534 
999 619 663 619 619 — 619 
1000 818 602 602 — 602 602 

 
 
The CDF for the simulated component can be obtained by arranging the component failure times 
in ascending order and assigning cumulative failure probabilities F(t) to each time value.  
For uncensored failure data, F(t) is typically estimated as a/(b+1) (Ang and Tang, 1975) or  
(a-0.5)/b (Meeker and Escobar, 1998), where i is the rank order of the specimens and k is the 
total number of specimens.  Using this approach (with F(t) = a/(b+1)), CDF values were 
obtained as indicated in Table 3 and shown in Figure 6.  Also shown in Figure 6 is the CDF 
obtained analytically using Eqn. (7), which is in close agreement with the simulated values, as 
expected. 
 
 

Table 3.  Simulated CDF Values for Example Component  
Containing Two Types of Anomalies 

 

k 
Total Life 
(cycles) 

F(t) 

1 247 0.0010 
2 279 0.0020 
3 284 0.0030 
4 290 0.0040 
5 292 0.0050 
— — — 
997 747 0.9960 
998 756 0.9970 
999 773 0.9980 
1000 815 0.9990 
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Figure 6.  Analytical and simulated probability of failure of failure values for the example 

component containing two anomaly types were in close agreement, as expected. 
 
 
But suppose instead that the 1000 samples were obtained from component fatigue tests.  In this 
situation, the CDFs for the individual anomaly types and their associated parent distributions 
would be unknown, and would have to be estimated from the failed specimen data.  
Assuming that the failure of each specimen could be traced to a specific anomaly type, the data 
could then be used to estimate the CDF associated with each anomaly type.  However, since the 
data were not obtained from specimens of a single anomaly type, special care must be taken 
when fitting the data to CDFs. 

 
A common approach for estimating the CDF of a single anomaly type from test data containing 
multiple anomaly types is to consider only the failure times that can be traced to the individual 
anomaly type and constructing a CDF using the previously described procedure for uncensored 
data.  The CDFs obtained using this approach are shown in Figure 7 for anomaly types A and B.  
The analytical CDF values for anomaly types A and B are also shown in Figure 7 for comparison 
purposes.  The CDF curves based on a fit of only the failure times that can be traced to the 
individual anomaly types are significantly different from the analytical values.  Furthermore, 
when these CDF curves are used to predict the CDF of the component (using Eqn. (6)), the 
results are not in agreement with either the analytical or simulated results of the component 
(from Figure 6). 
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Figure 7.  CDF values for individual anomaly types estimated from censored failure data 
were significantly different from the analytical values. 

 

 
The reason for this difference is that some of the life values are censored by the testing process.  
A given component fails when the minimum lifetime associated with any anomaly is reached, 
and the lifetimes associated with all other anomaly types in the component are not recorded 
(they are censored).  The CDFs cannot be obtained using this approach because many of the data 
are missing. 
 
Fortunately, statistical methods are well-established for treatment of competing risks 
(Kaplan and Meier, 1958; Nelson, 1972; Aalan, 1978; Moeschberger and David, 1974; 
Moeschberger and Klein, 1995; Chen et al., 2008; Cai and Prentice, 1995) that can be applied to 
this problem.  If the failure times associated with the different anomaly types are treated as 
independent random variables, then the Kaplan-Meier method (1958) can be used to estimate the 
CDFs associated with each anomaly type.  In this method, the lifetime is discretized into k 
intervals, and the probability of survival within an interval Pk for an anomaly type is based on the 
ratio of the number of components that survive over the interval to the number of components 
that were available at the beginning of the interval: 
 

k k
k

k

n f
P

n


  (9)

 
A conditional probability argument is made to establish the relationship among the survival 
probabilities associated with all of the non-overlapping intervals.  After the first time interval, 
some of the components may fail.  During the second time interval, only the components that 
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have not failed during the first interval are tested.  In other words, to survive the second time 
interval, it is implied that the component has also survived the first time interval: 
 

       2 1 2 1 2 1P I P I I P I P I I    (10)

 
Combining Eqns. (9) and (10), and recognizing that P2 is the conditional probability that a 
component survives interval 2 given that it has also survived interval 1 (  2 1P I I ): 

 

  1 1 2 2
1 2 1 2

1 2

n f n f
P I I P P

n n

    
      

   
  (11)

 
It follows that the probability of survival over m number of time intervals is given by: 
 

 
1

m
k k

k k

n f
P t

n

 
  

 
  (12)

 
and the associated probability of failure is: 
 

   
1

1 1
m

k k

k k

n f
F t P t

n

 
     

 
  (13)

 
One potential drawback of the Kaplan-Meier method is that the probability of failure values are 
expressed in a step function format, similar to the integrated form of a histogram.  The resulting 
curve contains discontinuities at each of the failure times and therefore does not satisfy the 
requirements of a true CDF.  To estimate the continuous CDF, Meeker and Escobar (1998) 
recommend setting the CDF values at each step equal to the average of the two values associated 
with each step change: 
 

     1

1

2 k kF t F t F t      (14)

 
The application of the Kaplan-Meier approach is illustrated in Tables 4 and 5 for the simulated 
failure data associated with anomaly types A and B, respectively.  Similar to the approach 
previously presented for uncensored data, the component failure times were arranged in 
ascending order, and the time intervals were selected so that only a single failure occurred during 
a given interval.  However, for a given anomaly type, CDF values were assigned to all of the 
component failure times for both anomaly types.  In Table 4, the first failure associated with 
anomaly A did not occur until interval 24.  The CDF value obtained using the Kaplan-Meier 
method (indicated as “K-M” in Table 4) experienced a step change at interval 24, and remained 
unchanged until the next failure of anomaly A at interval 31, and so on.  In Table 5, the first 
failure associated with anomaly B occurred at the first interval, and the K-M CDF experienced a 
step change over every interval until the first failure associated with anomaly A.  The continuous 
CDF estimate obtained using Eqn. (14) is also indicated in Tables 4 and 5 as the “M-E” CDF. 
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Table 4.  Failure CDF for Anomaly Type A Using Kaplan-Meier Approach  
Combined with Meeker-Escobar Data Fit 

Total Life k nk fk pk Pk K-M F(t) M-E F(t) 

0 0 1000 0 1.000 1.000 0.000 0.0000 
247 1 1000 0 1.000 1.000 0.000 0.0000 
279 2 999 0 1.000 1.000 0.000 0.0000 
— — — — — — — — 
340 23 978 0 1.000 1.000 0.000 0.0000 
345 24 977 1 0.999 0.999 0.001 0.0005 
348 25 976 0 1.000 0.999 0.001 0.0010 
— — — — — — — — 
358 30 971 0 1.000 0.999 0.001 0.0010 
360 31 970 1 0.999 0.998 0.002 0.0015 
360 32 969 0 1.000 0.998 0.002 0.0021 
— — — — — — — — 
747 997 4 1 0.750 0.075 0.925 0.9122 
756 998 3 0 1.000 0.075 0.925 0.9247 
773 999 2 0 1.000 0.075 0.925 0.9247 
815 1000 1 1 0.000 0.000 1.000 0.9624 

 
 

Table 5.  Failure CDF for Anomaly Type B Using Kaplan-Meier Approach  
Combined with Meeker-Escobar Data Fit 

 

Total Life k nk fk pk Pk K-M F(t) M-E F(t) 

0 0 1000 0 1.000 1.000 0.000 0.0000 
247 1 1000 1 0.999 0.999 0.001 0.0005 
279 2 999 1 0.999 0.998 0.002 0.0015 
284 3 998 1 0.999 0.997 0.003 0.0025 
290 4 997 1 0.999 0.996 0.004 0.0035 
— — — — — — — — 
453 221 780 1 0.999 0.824 0.176 0.1752 
453 222 779 0 1.000 0.824 0.176 0.1757 
454 223 778 0 1.000 0.824 0.176 0.1757 
— — — — — — — — 
746 996 5 0 1.000 0.040 0.960 0.9601 
747 997 4 0 1.000 0.040 0.960 0.9601 
756 998 3 1 0.667 0.027 0.973 0.9668 
773 999 2 1 0.500 0.013 0.987 0.9801 
815 1000 1 0 1.000 0.013 0.987 0.9867 



NASA/CR—2011-216977 34 

The CDFs estimated using the Kaplan-Meier approach combined with the Meeker-Escobar 
adjustment are shown in Figure 8 for anomaly types A and B.  Also shown is the analytical 
probability of failure of components containing multiple anomalies of only type A or type B.  
It can be observed that the CDF values for individual anomaly types estimated using the Kaplan-
Meier approach combined with the Meeker-Escobar data fit were in close agreement with the 
analytical values.  The CDF for a component with anomalies A and B (estimated using Eqn. (6)) 
is also shown in Figure 8.  It is also in close agreement with the analytical component values. 
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Figure 8.  CDF values for individual anomaly types estimated using the combined  
Kaplan-Meier/Meeker-Escobar approach were in close agreement  

with the analytical values. 
 
 
Once the marginal CDF values for anomaly types A and B have been estimated using the Kaplan-
Meier/Meeker-Escobar approach, they can be transformed to the associated parent distributions 
using Eqn. (8).  The resulting CDF values are shown in Fig. 9.  The analytical parent 
distributions are also shown in Fig. 9, where it can be observed that they are both in close 
agreement with the values estimated from the transformed failure data.  This illustrates how the 
approach is used to obtain the parent distributions which are ultimately used for risk prediction 
of components with different numbers of anomalies of multiple types. 

 



NASA/CR—2011-216977 35 

Total Life, cycles

0 500 1000 1500 2000

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

0.0

0.2

0.4

0.6

0.8

1.0 Anomaly A, Parent
Anomaly B, Parent
Anomaly A, Transformed K-M Fit
Anomaly B, Transformed K-M Fit

 

Figure 9.  The transformed CDF values based on the Kaplan-Meier/Meeker-Escobar 
approach were in close agreement with the analytical parent distributions. 

 
 

3.1.3 Application to Gas Turbine Engine Materials 
 

The approach described in Section 3.1.2 was applied to reliability prediction of a nickel-based 
superalloy based on data provided by the AFRL (AFRL, also reported in Jha et al., 2008).  
The material contained non-metallic particles (NMPs) and pores with anomaly occurrence rates 
indicated in Table 6.  AFRL had previously performed fatigue tests on cylindrical 
smooth specimens (diameter = 5 mm and gage length = 15 mm) at four stress levels  
(1200 MPa, 1150 MPa, 1100 MPa, and 1000 MPa).  All tests were conducted at a stress ratio of 
R = 0.05 and a temperature of 650C.  The test results at 1100 MPa revealed failures that could be 
traced to several anomaly types/locations and were selected for use in the reliability studies.  
As indicated in Table 7, NMP failures were identified at both the surface and subsurface of the 
specimens at this stress level, whereas pore failures occurred only on the surface. 

 
Table 6.  Anomaly Types Associated with Nickel-Based Superalloy Test Specimens 

 

Anomaly Occurrence Rate Volume Average Number 
Type Location per mm3 per mm2 mm3 Total Effective 

NMPs Surface 10 0.17 4.0 40.2 3.4 
NMPs Subsurface 10 0.17 290.5 2905.1 250.3 
Pores Surface 2445 19 1.8 4475.0 306.9 
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Table 7.  Component Failure CDF for Nickel-Based Superalloy Smooth Specimen  
Fatigue Failure Data with Applied Stress of 1100 MPa 

 

k Type Location Total Life F(t) 

0 — — 0 0 
1 NMP Surface 1736 0.0625 
2 NMP Surface 2210 0.1250 
3 NMP Surface 2309 0.1875 
4 NMP Surface 3237 0.2500 
5 Pore Surface 9446 0.3125 
6 Pore Surface 13188 0.3750 
7 NMP Subsurface 18405 0.4375 
8 Pore Surface 18525 0.5000 
9 NMP Subsurface 21936 0.5625 
10 NMP Subsurface 25081 0.6250 
11 NMP Subsurface 26417 0.6875 
12 NMP Subsurface 31736 0.7500 
13 Pore Surface 45337 0.8125 
14 NMP Subsurface 65021 0.8750 
15 NMP Subsurface 76339 0.9375 

 
 
The volume of material associated with the surface anomalies was based on a thin annulus 
(often referred to as an “onion skin”) at which the number of anomalies associated with the 
volumetric occurrence rate (Table 6) matched the number of anomalies associated with the 
surface occurrence rate.  The subsurface volume was based on the remaining volume  
(i.e., the total volume minus the surface volume).  The average number of anomalies for each 
anomaly type and location was computed as the product of the volume and the volumetric 
occurrence rate, indicated in Table 6.  Since many of the anomalies were too small to initiate 
growing cracks, an effective number of anomalies that could lead to failure was estimated based 
on a minimum threshold equivalent anomaly diameter (40 m for NMPs, and 21 m for pores). 
 
The CDFs for each of the three anomaly type/location combinations associated with the material 
were estimated using the combined Kaplan-Meier/Meeker-Escobar approach described in 
Section 3.1.2.  The results for surface NMPs are indicated in Table 8, where the failures all 
occurred at relatively short life values compared to the other anomaly types/locations.  The 
results for subsurface NMPs and surface pores are indicated in Tables 9 and 10, respectively.  
The marginal CDFs indicated in Tables 8-10 are shown in Figure 10.  Also shown in Figure 10 is 
the CDF for all anomalies (indicated in Table 7) which was obtained using the approach for 
uncensored data described previously in Section 3.1.2. 
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Table 8.  Failure CDF for Surface NMPs Using Kaplan-Meier/Meeker-Escobar Approach 
 

Total Life k nk fk pk Pk K-M F(t) M-E F(t) 

0 0 15 0 1.000 1.000 0.000 0.000 
1736 1 15 1 0.933 0.933 0.067 0.033 
2210 2 14 1 0.929 0.867 0.133 0.100 
2309 3 13 1 0.923 0.800 0.200 0.167 
3237 4 12 1 0.917 0.733 0.267 0.233 
9446 5 11 0 1.000 0.733 0.267 0.267 
13188 6 10 0 1.000 0.733 0.267 0.267 
18405 7 9 0 1.000 0.733 0.267 0.267 
18525 8 8 0 1.000 0.733 0.267 0.267 
21936 9 7 0 1.000 0.733 0.267 0.267 
25081 10 6 0 1.000 0.733 0.267 0.267 
26417 11 5 0 1.000 0.733 0.267 0.267 
31736 12 4 0 1.000 0.733 0.267 0.267 
45337 13 3 0 1.000 0.733 0.267 0.267 
65021 14 2 0 1.000 0.733 0.267 0.267 
76339 15 1 0 1.000 0.733 0.267 0.267 

 
 

Table 9.  Failure CDF for Subsurface NMPs Using  
Kaplan-Meier/Meeker-Escobar Approach 

 

Total Life k nk fk pk Pk K-M F(t) M-E F(t) 

0 0 15 0 1.000 1.000 0.000 0.000 
1736 1 15 0 1.000 1.000 0.000 0.000 
2210 2 14 0 1.000 1.000 0.000 0.000 
2309 3 13 0 1.000 1.000 0.000 0.000 
3237 4 12 0 1.000 1.000 0.000 0.000 
9446 5 11 0 1.000 1.000 0.000 0.000 
13188 6 10 0 1.000 1.000 0.000 0.000 
18405 7 9 1 0.889 0.889 0.111 0.056 
18525 8 8 0 1.000 0.889 0.111 0.111 
21936 9 7 1 0.857 0.762 0.238 0.175 
25081 10 6 1 0.833 0.635 0.365 0.302 
26417 11 5 1 0.800 0.508 0.492 0.429 
31736 12 4 1 0.750 0.381 0.619 0.556 
45337 13 3 0 1.000 0.381 0.619 0.619 
65021 14 2 1 0.500 0.190 0.810 0.714 
76339 15 1 1 0.000 0.000 1.000 0.905 
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Table 10.  Failure CDF for Surface Pores using Kaplan-Meier/Meeker-Escobar Approach 
 

Total Life k nk fk pk Pk K-M F(t) M-E F(t) 

0 0 15 0 1.000 1.000 0.000 0.000 
1736 1 15 0 1.000 1.000 0.000 0.000 
2210 2 14 0 1.000 1.000 0.000 0.000 
2309 3 13 0 1.000 1.000 0.000 0.000 
3237 4 12 0 1.000 1.000 0.000 0.000 
9446 5 11 1 0.909 0.909 0.091 0.045 
13188 6 10 1 0.900 0.818 0.182 0.136 
18405 7 9 0 1.000 0.818 0.182 0.182 
18525 8 8 1 0.875 0.716 0.284 0.233 
21936 9 7 0 1.000 0.716 0.284 0.284 
25081 10 6 0 1.000 0.716 0.284 0.284 
26417 11 5 0 1.000 0.716 0.284 0.284 
31736 12 4 0 1.000 0.716 0.284 0.284 
45337 13 3 1 0.667 0.477 0.523 0.403 
65021 14 2 0 1.000 0.477 0.523 0.523 
76339 15 1 0 1.000 0.477 0.523 0.523 
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Figure 10.  The marginal CDFs for each anomaly type were obtained  
from the Kaplan-Meier/Meeker-Escobar fit of the failure data. 
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The parent distributions were obtained by applying the effective number of anomalies and the 
F(t) values to Eqn. (8) at each life value.  The transformed CDFs are shown in Figure 11, where 
it can be observed that the surface NMPs have a significant influence on component reliability 
when single anomalies are considered. 
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Figure 11.  The parent CDFs were determined by transforming the  
marginal CDF values for each anomaly type. 

 
The parent CDFs shown in Figure 11 can be used to make reliability predictions for components 
with different numbers of anomalies.  Compared to realistic engine components such as rotors or 
disks, the smooth specimens have a relatively small volume to surface area ratio.  To study this 
effect, reliability predictions were made for a range of volume to surface area ratio values 
indicated in Table 11 (the volume to area ratio of the test specimens was assigned a value of 1.0).  
The results are shown in Figure 12, where it can be observed that component failure probabilities 
at early lives were dominated by surface NMPs for all of the volume to surface area ratios 
considered.  The surface pores and subsurface NMPs had the most influence near the middle and 
end of life, where the component CDF values were already very large. 
 

Table 11.  Influence of Component Volume to Surface Area Ratio on  
Number of Anomalies for Each Anomaly Type 

 

Volume to Area Ratio 
Diameter 

(mm) 

Number of Active Anomalies 

Surface NMP Subsurface NMP Surface Pore 

1 5 3 250 306 
2 10 7 1008 613 
5 25 17 6326 1532 
10 50 35 25338 3065 
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(b) 

Figure 12.  The influence of volume to surface area ratio on  
probability of failure and associated contribution of:  

(a) surface NMPs, (b) subsurface NMPs, and (c) surface pores. 
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Figure 12 (cont).  The influence of volume to surface area ratio on  

probability of failure and associated contribution of:  
(a) surface NMPs, (b) subsurface NMPs, and (c) surface pores. 

 
 
As indicated in Table 11, the number of subsurface NMPs becomes very large as the volume to 
area ratio is increased.  For a volume/area value of 10, there are substantially more subsurface 
NMP anomalies compared to the other types present.  This suggests that these anomaly types 
should play more of a role in component failures as the volume to area ratio is increased.  This is 
confirmed in Figure 12(b) where it can be observed that the slope of the CDF associated with 
subsurface NMPs becomes considerably steeper as the volume to area ratio increases from  
1 to 10.  With such a large number of subsurface NMPs available at relatively high volume to 
area ratios, one might intuitively expect subsurface NMPs to also play a role in component 
failures at relatively low life values.  However, Figure 12(a) shows that the surface NMPs are 
much more likely to fail at the low life values because the slope of the CDF of surface NMPs 
increases significantly with an increase in the volume to surface area ratio.  The probabilistic 
model predicts that subsurface NMPs and surface pores will fail only after the surface pores have 
been exhausted.  So although the subsurface NMPs are more plentiful than the other anomaly 
types, there are still enough surface NMPs available to substantially influence the early stages of 
component life. 

 
For this material, the dominant failure mechanism was not significantly influenced by changes in 
the volume to area ratio, which suggests that the smooth specimen test results could be directly 
used to predict the failure mechanisms of full scale engine components.  Further research is 
required to investigate the extent of this relationship. 
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3.2 Development of an Unfolding Algorithm for Estimating Spheroid 
Parameters from Sectioning Data Measurements 

3.2.1 Introduction 
 
As part of the OEM engagement task, SwRI learned that at least one of the OEMs uses only 
sectioning data to characterize anomalies in powder materials.  Several GRC studies focused on 
this method, and an unfolding algorithm was developed by Ghosn et al. (2003) that was 
successful for some anomalies (-80+100 mesh metal powder) but was less successful for others 
(-270 mesh metal powder).  Since one of the ultimate objectives of this project was to transfer 
the technologies developed at GRC into DARWIN, an unfolding algorithm was developed and 
implemented in software at SwRI to investigate the accuracy of the unfolding method.  To verify 
the algorithm, a fictitious material containing a known distribution of spheroidal anomalies was 
simulated through sectioning and unfolding to reveal the potential computational errors 
associated with this approach. 
 
Wicksell (1925, 1926) investigated the problem of estimating the size-shape distributions of 
spheres and ellipsoids from the data of the circles or ellipses observed in planar sections. 
Cruz-Orive (1976, 1977) proved that the ellipsoidal problem cannot be solved universally.  
The equation for the general stereological problem has unique solutions only for particular 
families of ellipsoids called spheroids, which are biaxial ellipsoids.  The spheroids may have 
random size and shape, not necessarily independent from each other, but they must all be either 
prolate or oblate for a given model.  For prolate spheroids (elongated “football” shape) the major 
axis is the rotator axis, whereas the minor axis is the rotator axis for oblate spheroids 
(flattened “pancake” shape). 
 

3.2.2 The Stereological Equation` 
 
The general problem of predicting the size-shape distribution from the measurements of 
section profiles is described by the stereological equation (Cruz-Orive 1976, 1977;  
Ohser and Mücklich 2000).  Let the size parameters U and S be the major caliper parameter of a 
spheroid and its planar section profile, respectively.  Let V be the shape parameter of a typical 
spheroid and T be the random shape parameter of a random section profile.  Let FV(u,v) and 
FA(s,t) denote the bivariate size-shape distribution functions of the spheroids and their elliptical 
section profiles, respectively, where FV(u,v)=P(U≤u,V≤v) and FA(s,t)=P(S≤s,T≤t).  
The probability of both S>s and T>t  is given by: 
 

 ),()1 ,(),(1),( tsFsFtFtTsSP AAA   (15) 
 
The stereological equation describes the relationship among the distribution functions of the 
spheroids and elliptical section profiles of prolate or oblate spheroids whose principal major and 
minor semi-axes are a and b, respectively: 
 

 ),,()()]()1,(),(1[ 1 vudFt  s,v, ,up Nt ,sF sFt FN VtsVAAAA  
 (16) 
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where 0<s and 0<t≤1. The shape parameter is defined as v = 1 – (b/a)2. The bi-dimensional 
size-shape variables (u,v) for prolate and oblate spheroids are (b,v) and (a,v), respectively.  
Similarly, the size-shape parameter (s,t) for elliptical profiles is defined as (a, 1 – (b/a)2 ), where 
a and b are the principal major and minor semi-axes of the elliptical profiles, respectively  
(Cruz-Orive, 1976). 
 

3.2.3 Numerical Solution of the Stereological Equation 
 
The unfolding algorithm proposed by Cruz-Orive is described in this section.  There is a close 
correspondence between linear integral Eqn. (2) which specify linear relations among 
distribution functions and linear equations which specify analogous relations among vectors of 
relative frequencies.  The stereological integral Eqn. (2) can be transformed into a linear equation 
system: 
 
 NA = PNVQ (17) 
 
where NV and NA are vectors of relative frequencies of the spheroids and their elliptical profiles, 
respectively.  P and Q are transformation matrices corresponding to the kernel function p(u,v,s,t)  
in Eqn. (2).  Suppose the range (0, B) of size component b (or a) is divided into s  bins of equal 
width B/s, and the range (0,1) of the shape component is divided into k bins of equal width 1/k.  
The rectangular domain of variable (b,v) or (a,v) is divided into a grid comprising s  k “cells”.  
The relative frequencies of spheroids per unit volume are: 
 

   k,j,s,i;j,iNV 11 VN , (18) 

 

where N/V  NV, note that VV
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where NA(, )  NA..   Clearly, AA
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.   Solving Eqn. (3) yields: 

 

      k,j ,s,i,q,Npj,iN j
A

S

i

k

j

ia
V 111  

 

 

 
 , (20) 

 
where pi, qj  are the elements of matrices P-1 and Q-1, respectively.  P is an upper triangular 
matrix that is size dependent, whereas Q is a lower triangular matrix that is shape dependent. 
The elements of matrices P and Q are given as follows: 
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  (21) 
 
For populations consisting of prolate spheroids, we have, 
 

  (22) 
 
where: 

 
 
and: 
 

  (23) 
 
where: 

 
 

 
3.2.4  Application Example 

 
A Fortran program based on the Cruz-Orive unfolding algorithm was implemented and 
illustrated for a cubic section of a fictitious material containing oblate spheroidal anomalies.  
The spheroid dimensions (major axis a and aspect ratio b/a) and orientation angles were modeled 
as independent uniformly distributed random variables with the values indicated in Table 12.  
Using Monte Carlo simulation, spheroids with random values of a and b/a were generated and 
placed at random 3D locations within a cubic section of the fictitious material.  To compute the 
relative frequency of anomalies per unit volume NV of a given size and aspect ratio, the full 
ranges of a and b/a values were discretized into s and k bins, respectively.  Two discretization 
schemes were considered: 5 × 5 and 10 × 10. 
 
To simulate the measurements that would be obtained by the sectioning process, horizontal 
section cuts were applied at various heights within the cube, and the relative frequency of 
anomalies per unit area NA was obtained for the size and shape parameters associated with each 
anomaly that appeared on the section plane.  The values obtained from the section plane were 
converted using the Cruz-Orive unfolding algorithm to predict the size and shape distribution of 
the spheroids. 
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Table 12.  Spheroid Parameters Associated with Application Example 

Variable Description Lower Bound Median Upper Bound Distribution

a major axis 0.0 5.0 10.0 Uniform 
b/a aspect ratio 0.0 0.5 1.0 Uniform 

1, 2 ,  3 orient. angles 0.0  2 Uniform 
 
 
Figure 13 shows the 3D histogram plots of the relative frequencies of the actual population of 
spheroids and the predicted population based on measurements of their elliptical profiles on 
98 planar sections.  The predicted results have reasonable agreement with the actual distributions. 
Computational accuracy improves with the increasing number of sections, as expected, due to 
the increased total number of Monte Carlo samples associated with the additional sections. 
The influence of the number of section plane measurements on predicted spheroid size parameter 
and shape parameter values is shown in Figures 14 and 15, respectively for a 10 × 10 grid and a 
5 × 5 grid.  For both parameters, predictions were significantly improved when the number of 
sections was increased from 1 to 10, but increasing the number of sections by another order of 
magnitude (i.e., from 10 to 100) had only a marginal improvement on prediction accuracy.  
This suggests that there may be an optimum number of sections that provides a good balance 
between computational accuracy and the number of sections (and associated costs). 

 
Generally, the errors associated with the stereological unfolding algorithm come from two 
primary competing sources: statistical error (i.e., not enough Monte Carlo samples) and 
discretization (i.e., bin size) error.  Discretization error decreases with increasing number of bins, 
while statistical error increases with increasing number of bins. The bin size should not be too 
large or too small.  There is an optimal discretization parameter that minimizes the total error 
(Ohser and Sandau, 2000).  In practical experiments, the number of sections is limited and data 
noise often dominates, so the discretization error is generally insignificant compared with 
statistical error. For example, the accuracies of the results using 5 × 5 bins are comparable to 
those with 10 × 10 bins, if not better.  Therefore, the focus should be on reducing statistical error 
in practical applications.  It is important to have a sufficient number of samples in each bin to 
have small statistical errors.  Statistical error is smaller if measurements are done on more planar 
sections, or if the material has a higher density of spheroid centers and the spheroids are larger. 
However, there is a maximum limit on the density of spheroids for the Cruz-Orive stereological 
unfolding algorithm because this algorithm assumes that the spatial distribution of spheroids is 
uniform and dilute.  In practice, “dilution” is satisfactory whenever the volume fraction of the 
spheroids to the total volume is less than about 10% (Cruz-Orive, 1977).  This condition is 
required to assume that the set of spheroid centers approximately forms a “Poisson ensemble” in 
three dimensions. 
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(a) 
 
 

 

(b) 

Figure 13.  Bivariate histograms (stereograms) of anomaly size and shape parameter 
associated with anomalies in the fictitious material:  (a) original population of spheroids, 

and (b) predicted population of spheroids based on sectioning data transformed  
using the Cruz-Orive unfolding algorithm. 
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(a) 

 
 

 
(b) 

Figure 14.  Influence of the number of section plane measurements on predicted 
spheroid size parameter values: (a) 10 × 10 bin grid, and (b) 5 × 5 bin grid. 
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(a) 

 
 

 
(b) 

 
Figure 15.  Influence of the number of section plane measurements on predicted spheroid 

shape parameter values: (a) 10 × 10 bin grid, and (b) 5 × 5 bin grid. 
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3.2.5 Discussion 
 
As mentioned in Section 3.2.1, it currently is impossible to accurately predict the shape and 
orientation parameters of a general ellipsoid based on measurements obtained from 2D 
sectioning data.  If data are available in another form, such as HLS, then it may be possible to 
predict general ellipsoid parameters by combining the data using Bayesian updating or a similar 
method.  On the other hand, if data are only available from 2D sectioning, then a general 
ellipsoid model is probably not an appropriate one because it simply cannot be fully 
characterized.  In this situation, the anomaly model should be limited to either the prolate or 
oblate spheroid model. 
 
In this study, an unfolding algorithm was implemented and verified that can be used to estimate 
the dimensions and orientations of 3D spheroids based on 2D sectioning measurements.  It was 
shown that the accuracy of the predicted spheroid model is dependent on the number of sections 
and the discretization of the mesh used to characterize the data.  In section 2.1.1, it was 
mentioned that the unfolding algorithm developed by Ghosn et al. (2003) performed well for 
some mesh sizes and not so well for others. This difference may possibly have been due to the 
number of sections or the discretization bin width. 
 
In some instances, the number of sections may be a fixed quantity (e.g., historical data).  In this 
case, the unfolding algorithm could be used to quantify confidence bounds on fracture risk 
associated with the uncertainty in the spheroid model for the fixed number of sections.  For new 
design, the number of sections is probably limited by the cost to obtain them.  In this situation, 
the unfolding algorithm could be used to identify the minimum number of sections that would be 
required to meet a fracture risk reliability target that accounts for the uncertainty associated with 
the number of sections.  In addition, since DARWIN includes a capability to quantify the 
influences of manufacturing and service inspections on fracture risk, it could be used to extend 
the cost tradeoff to include the cost of inspection.  This would allow the engineer to identify the 
best combination of testing (sectioning) and inspections to minimize overall life-cycle cost. 
 
The unfolding algorithm used in this study was limited to spheroid dimensions and orientations 
that were modeled as independent random variables.  GRC studies have shown that anomaly 
dimensions are strongly correlated variables, so this influence would need to be considered 
before implementing an unfolding algorithm in DARWIN. 
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3.3 Algorithms for Modeling the Growth Rates of Small Fatigue Cracks 
 

3.3.1 Introduction 
 
The tendency for small fatigue cracks to grow at rates faster than anticipated from large-crack 
data trends and/or to grow at stress intensity factor ranges below the usual large-crack threshold 
has long been noted, and a variety of reasons have been proposed (McClung et al., 1996; 
Davidson et al., 2003). 
 
GRC measured the growth rates of small fatigue cracks in Udimet 720 and compared the results 
with large-crack behavior (Telesman et al., 2006).  Their initial comparison suggested that 
classic small-crack behavior was observed, including high initial crack growth rates and large 
scatter. Many cracks exhibited decreasing crack growth rates and some arrested completely.  
Few small cracks grew to become dominant cracks with increasing crack growth rates.  
However, further examination of the data revealed that much of the characteristic “small crack” 
behavior was associated with “pop-in” behavior during the first 250 cycles.  When data from this 
initial crack formation and growth period were removed, the remaining data often fell at or 
below the extrapolated Paris line, and some of the classic “small crack” behavior was no longer 
apparent. 
 
In research (currently unpublished) funded by the FAA, the current authors have recently 
surveyed small-crack behavior in a variety of common gas turbine engine rotor materials.  
Small-crack data were collected from the literature and (when possible) from related private 
communications with the experimentalists who generated the data.  The specific rotor materials 
included Ti-6Al-4V, Ti-6Al-2Zr-4Sn-6Mo, IMI685, IN-100, and Astroloy.  Classic small-crack 
effects were observed in every case. 
 
The pragmatic engineering challenge is not only to predict when this “anomalous” small-crack 
behavior will occur, but to predict the actual growth rates of small fatigue cracks on the basis of 
large-crack data and other appropriate parameters (but without actually having to generate 
fatigue crack growth (FCG) rate data for small cracks, since this is typically an expensive effort).  
The FAA-funded study critically evaluated one simple engineering model that can be used to 
correlate small-crack behavior with corresponding large-crack behavior. 
 
A brief study was conducted in the present project to extend this survey of small-crack behavior 
to the GRC U720 data, and to evaluate the same engineering model using the U720 data. 
 

3.3.2 Analysis Methods 
 
Two types of crack growth data analysis methods require delineation.  The first method is that 
used to calculate the average crack growth rate, da/dN, from measured crack length vs. cycles 
data.  In this study, a direct secant method that calculates the slope between each two adjacent  
(a, N) pairs was used.  The second method is that used to calculate the stress intensity factor 
range from the crack size and applied stress range.  The U720 small-crack data were generated 
with small cylindrical specimens under uniform remote axial tension.  The surface crack depth 
was estimated to be equal to half of the measured surface length, and the Forman-Shivakumar 
(1986) solution for a thumbnail crack in a solid cylinder (also available in NASGRO as the SC07 
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solution) was used to calculate the stress intensity factor.  This solution was used for consistency 
with the other data analysis performed in the FAA-funded effort. 
 
A wide variety of different analysis methods have been proposed to calculate an enhanced crack 
driving force for small cracks and hence to predict their accelerated growth rates compared to 
large cracks with the same nominal driving force.  The purpose of this small study was to 
investigate one simple method that has shown some promise in earlier studies.  The method 
was originally proposed by El Haddad et al. (1979) based on the so-called Kitagawa 
(Kitagawa and Takahashi, 1976) diagram construction, Figure 16.  The Kitagawa diagram 
integrates the traditional large crack fracture mechanics threshold, Kth, with the traditional 
smooth specimen endurance limit, σe.  The region on the Kitagawa diagram both above the 
horizontal endurance limit line and above the sloping threshold line is “unsafe” because fatigue 
failure is predicted to occur.  The region below both lines is “safe” because fatigue failure is 
predicted not to occur.  The intersection of the two lines, defined as a0, is given by the equation: 
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where, for consistency with the smooth specimen endurance limit data, F = 0.67 is the geometry 
correction factor in the K solution for the semi-circular surface crack in the smooth specimen. 
 
 

 
 

Figure 16.  Schematic Kitagawa diagram relating smooth specimen  
fatigue endurance limit (Δσe) and large-crack threshold (ΔKth). 
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The Kitagawa diagram indicates that cracks smaller than a0 must be able to grow at nominal 
stress intensity factor ranges that are less than the large crack threshold, since smooth specimens 
fail by the initiation and growth of microcracks to failure in this regime.  El Haddad suggested 
that small cracks could grow below the large-crack threshold because the effective driving force 
of the small cracks was larger than expected from traditional large-crack fracture mechanics.  
He proposed that the actual “equivalent” driving force could be calculated by replacing the 
physical crack size a with the sum (a + a0) according to the relationship: 
 

 
 0)( aaSaFKeq  

 (25) 
 
Here F(a) is the crack shape and specimen/component geometry correction factor for the 
geometry of interest; a0 is not included in the F(a) calculation.  Note that the a0 contribution is 
negligible for large values of a, but becomes increasingly significant for smaller values of a. 
 
Although the El Haddad (EH) concept has been criticized for its apparent lack of physical 
justification, several researchers have independently derived similar formulations based on 
detailed micromechanical considerations, and these have been shown to be numerically identical 
to the EH formulation under typical conditions.  Chan (1999) related a0 to dislocation pileups 
and mode II shear cracks, and found satisfactory agreement with small-crack data from titanium 
aluminides.  Tanaka et al. (1981) formulated the problem in terms of a crack-tip slip band 
propagating across one or more grain boundaries, and demonstrated reasonable agreement 
between his formulation and a variety of experimental data, mostly for steels and aluminum 
alloys. 
 

3.3.3 Results 
 
The ability of the EH small-crack model to correlate small-crack and large-crack data is first 
illustrated by showing some of the data evaluated in the FAA-funded study. 
 
Lenets et al. (2000, 2002) at Honeywell and Caton et al. (unpublished) at the AFRL tested 
Ti-6Al-4V from a common material source. The Ti-6Al-4V was provided in a solution-treated 
and over-aged (STOA) condition.  The microstructure consisted of 60 volume percent primary 
alpha phase and 40 volume percent lamellar transformed beta phase.  The grain structure was 
equiaxed and uniform with an average alpha grain size around 10 m (0.0004 in.). 
 
Both sets of small-crack tests were conducted on smooth cylindrical specimens at room 
temperature.  Lenets et al. and Caton et al. both conducted tests at R = 0.1 and R = 0.5, and 
Caton et al. also conducted tests at R = -1.  The small surface cracks in the Caton et al. tests were 
initiated at focused ion beam (FIB) micro-notches roughly 30 – 40 m wide, 15 – 20 m deep, 
and 3 – 4 m high.  The small surface cracks in the Lenets et al. tests were initiated naturally.  
Crack growth was monitored in both laboratories with standard cellulose acetate replication 
methods.  Large-crack data had been generated at the same stress ratios with the same material 
using both compact tension and surface-crack tension specimens (Sheldon et al., 1999; 
Boyce and Ritchie, 2001). 
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Comparisons of the small-crack and large-crack growth rate data for the HCF program  
Ti-6Al-4V are shown in Figure 17 for stress ratio R = 0.1.  The data exhibited a pronounced 
small-crack effect at the smallest crack sizes, growing faster than the corresponding large-crack 
trends. 
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Figure 17.  Comparison of small-crack and large-crack growth rate data for  
Ti-6Al-4V tested by Lenets et al. and Caton et al. at R = 0.1. 

 
The EH small-crack parameter a0 was calculated to be a0 = 0.0021 in. (53 m) from Eqn 1 based 
on available large-crack threshold and smooth-specimen endurance limit data for the same 
material.  The El Haddad-corrected values of K were then calculated from Eqn 2 for all data.  
The results are shown for R = 0.1 in Figure 18.  Following the EH correction, the small-crack 
data agree very closely with the large-crack data trends.  Similar correlations (not shown here) 
were successful at R = 0.5 and R = -1, although the available data were more limited. 
 

Jha et al. (2008) performed large-crack and small-crack tests at 650C (1200F) with the nickel-
based superalloy IN-100.  The material was fine-grained, subsolvus, and powder-processed with 
a median -grain size about 4 m (0.00016 in.).  The yield strength at the test temperature was 
about 1100 MPa (160 ksi), the UTS was about 1379 MPa (200 ksi), and the % elongation at 
fracture was about 20%. 
 
Small-crack tests were performed at R = 0.05 using mostly cylindrical smooth specimens under 
uniform tension (one test was conducted with a square bar under bending).  Some cracks 
originated naturally at non-metallic particles on the surface, while other cracks initiated naturally 
at surface pores.  Crack length measurements were performed with acetate replicas at room 
temperature during interruptions in the test.  Large crack da/dN vs. K data were generated with 
C(T) specimens. 
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Figure 18.  Comparison of small-crack and large-crack growth rate data for Ti-6Al-4V 
tested by Lenets et al. and Caton et al. at R = 0.1, with small-crack data adjusted  

using El Haddad parameter. 
 
 
Two approaches were used to estimate the EH parameter, one based on Eqn. (24) and one based 
on scaling the grain size.  The large-crack threshold was measured to be 12.3 MPam from a 
single reported large-crack test.  Estimating the “endurance limit” was difficult because 
smooth-specimen fatigue tests (R = 0.05) were only conducted at maximum stresses of 
1000 MPa, 1100 MPa, 1150 MPa, and 1200 MPa.  At the lowest stress level tested, failures were 
observed at lives ranging from 60,000 cycles to nearly 1,000,000 cycles.  The earlier failures 
were mostly associated with crack initiation at subsurface non-metallic particles.  The longer 
lives (300,000 to 950,000 cycles) were mostly associated with crack initiation at surface pores, 
which is thought to be more relevant to the EH estimate.  Based on extrapolation of the available 
failure data for surface pore cracks, the endurance limit was crudely estimated to be about  
σe = 900 MPa.  This estimate and the measured large-crack threshold led to an estimated EH 
parameter a0 = 132 m (0.0052 in.).  An alternative value was calculated by scaling the median 
-grain size: six times this dimension is 24 m (about 0.001 in.).  The earlier studies of small-
crack behavior in titanium rotor alloys had found six-times-grain-size to be a reasonable estimate 
of the EH parameter.  
 
Comparisons of the large-crack and small-crack data are shown in Figure 19, and comparisons of 
large-crack data and EH-corrected small-crack data are shown in Figure 20.  The EH estimate 
based on Eqn. (24) over-predicted the small-crack effect (compared to the available large-crack 
data), while the EH estimate based on scaling the median -grain size slightly  
under-predicted the small-crack effect. 
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Figure 19.  Comparison of small-crack and large-crack growth rate data  
for IN-100 tested by Jha et al. at R = 0.05. 
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Figure 20.  Comparison of small-crack and large-crack growth rate data for IN-100  
tested by Jha et al. at R = 0.05, with small-crack data adjusted using two estimates  

of the El Haddad parameter. 



NASA/CR—2011-216977 56 

Consider now the GRC U720 data.  The GRC small-crack tests were performed at 1200F 
(650°C) on cylindrical, axially-loaded fatigue specimens with a 0.40-inch (10.2 mm) diameter.  
All cracks were initiated naturally at artificially-seeded ceramic inclusions with average seed 
diameters of 0.0021 in. (54 m) or 0.0048 in. (122 m). Crack size measurements were 
performed in a special rotational stage in a scanning electron microscope.  Fatigue cycling at 
20 cpm in ambient laboratory air was periodically interrupted and the specimen transferred to the 
SEM stage to map and track surface crack growth.  The fatigue cycling was initially performed 
under strain control at 20 cpm (0.33 Hz) with strain ratios of R = 0 or -1 under strain ranges of 
0.6% or 0.8%.  Following an initial cycling period during which maximum and minimum loads 
stabilized, testing continued to failure under load control at a frequency of 5 Hz.  
The corresponding small-crack load ratios were approximately R = -0.33 or R = -1.  
The maximum stresses in the small crack tests varied from 154 ksi to 163 ksi for R = -0.33 and 
from 107 ksi to 109 ksi for R = -1. 
 
GRC provided an extensive data base of small-crack results to SwRI, and only a representative 
selection of these tests were included in this study. Specifically, R = 0 specimens included were 
5776-C-L17, 5776-J-L22, 5776-D-L3, and 5776-H-L21.  The R = -1 specimens included were 
5776-C-L2, 5776-D-L18, 5776-H-L14, and 5776-J-L5.  Furthermore, data from the first 
250 cycles of fatigue testing (the so-called pop-in period) were excluded from this study.   
 
Large-crack tests were performed for comparison under load control at 1200F with so-called Kb 
bar (surface crack) specimens at R = -0.25 or -1.  Comparisons of large-crack and small-crack 
data (with and without EH corrections) are shown in Figures 21 and 22 for R = -0.33 and 
Figures 23 and 24 for R = -1.  Since endurance limit data were not available, the EH parameter 
was again estimated by scaling the average grain size (8 m) by a factor of six. 
 
Even after excluding the data from the pop-in period, the remaining small-crack data still 
exhibited classical small-crack effects, growing at K values smaller than the large-crack 
threshold, and growing at rates faster than large-crack trends.  The EH correction was generally 
successful in correlating large-crack and small-crack data at R = -0.33.  At R = -1, the EH 
correction under-corrected the small-crack data relative to the large-crack data, although it did 
successfully consolidate the small-crack data.  Unfortunately, only near-threshold small-crack 
data were available. 
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Figure 21.  Comparison of small-crack and large-crack growth rate data  
for U720 at R = -0.33. 
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Figure 22.  Comparison of small-crack and large-crack growth rate data for U720  
at R = -0.33, with small-crack data adjusted using El Haddad parameter. 
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Figure 23.  Comparison of small-crack and large-crack growth rate data for  
U720 at R = -1. 
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Figure 24.  Comparison of small-crack and large-crack growth rate data for  
U720 at R = -1, with small-crack data adjusted using El Haddad parameter. 
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3.3.4 Discussion 
 
There are several practical difficulties associated with the El Haddad approach when a0 is 
estimated from Eqn. (24).  For example, it is sometimes difficult to define an “endurance limit” 
for some materials.  Studies during the last two decades in the high cycle fatigue and very high 
cycle fatigue regimes have indicated that many materials do not exhibit a distinct plateau in 
fatigue strength at very long lives, but that the fatigue strength may continue to decrease with 
further cycling.  A stated “endurance limit” may merely reflect the limits imposed on fatigue test 
duration.  A shorter test duration may lead to an overestimate of the endurance limit, which will 
give an underestimate of the EH parameter, and potentially an underestimate of small-crack 
growth rates. 
 
In addition, it is sometimes observed that the failure mode for smooth specimen fatigue tests may 
shift from surface initiation to subsurface initiation at very long lifetimes.  Since Eqn. (24) 
requires some assumption about the crack geometry of interest, a shift from a surface crack to an 
embedded crack will require a change in the formulation (and may introduce a discontinuity or 
conflict between data derived from different failure modes).  Eqn (24) as written above is 
applicable only to endurance limits associated with surface failure modes.  The failure origins 
associated with high cycle fatigue specimens are not always reported.  If the endurance limit for 
surface crack behavior is estimated to be too low because it is influenced by subsurface failures 
at longer lives, then the EH parameter may be estimated to be too large, thereby overestimating 
small-crack growth rates. 
 
Furthermore, fatigue failure behavior in some materials may be controlled by populations of 
inclusions, and the life-limiting crack in a specimen may be associated with a particularly large 
defect.  Any effect of this defect on the growth (or non-growth) of microcracks (associated, for 
example, with local stress concentrations or residual stresses) is not reflected in the formulation 
behind Eqn. (24).  In some cases, the defect may be sufficiently large that the initial resulting 
microcrack is larger than a0, thereby raising additional questions about the formulation.  If the 
intended goal of the EH small-crack formulation is to describe crack growth behavior in normal 
matrix material, then properties derived from defect-dominating behavior may be inappropriate.  
However, if the cracks of interest in the material always arise from such defects, then the 
formulation may end up being self-consistent. 
 
A different set of difficulties are associated with characterization of the large-crack threshold, the 
other key input into Eqn. (24).  It is now known that the apparent large-crack threshold can be 
influenced both by test technique (e.g., traditional load-shedding methods) and specimen 
geometry (large-crack thresholds generated with C(T) specimens are sometimes observed to be 
significantly higher than with M(T) specimens).  The most common error appears to be an 
overestimation of Kth based on C(T) tests at R  0 using traditional load-shedding methods.  
Underestimation of Kth appears to be less likely.  An overestimate of Kth will contribute to an 
overestimate of a0 and an overestimate of small-crack growth rates. 
 
Another complication associated with the large-crack threshold is that other environmental 
factors may influence the apparent value of this threshold (for example, if corrosion product 
builds up on the crack faces and causes premature arrest due to oxide-induced crack closure).  
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There may also be environmental influences on small surface cracks in service, but there may not 
be adequate similitude between the threshold test configuration and the small-crack 
configuration for the threshold data to be transferable to the EH calculation.  Again, an 
overestimate of Kth would lead to an overestimate of small-crack growth rates by the EH model. 
 
Given these difficulties associated with obtaining appropriate input data to estimate the EH 
parameter, it is encouraging that some success was observed using microstructurally-motivated 
estimates of a0.  It may also be practical to use totally empirical estimates of a0 in some cases, as 
was also done here in a few cases.  However, the more empirical the estimate, the greater is the 
need for adequate small-crack growth rate data to validate the estimate. 
 
The physical meaning of the EH length parameter also deserves some further discussion.  
El Haddad originally considered a0 to be an intrinsic crack length in the microstructure.  Such an 
interpretation is troublesome, however, since a0 is on the order of several grain diameters.  
The FCG threshold value for small cracks is known to increase with crack length, approaching 
the long-crack value when the crack becomes large.  A more reasonable and physically appealing 
interpretation for a0 is simply that it describes the length scale where the FCG threshold of the 
small crack approaches that of the large-crack threshold. 
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4.0 PROGRAM PLAN FOR FUTURE RESEARCH 
 
One of the primary objectives of the current study was to identify technologies for assessment of 
P/M materials developed at GRC that could be transferred for use by gas turbine engine 
manufacturers.  Based on the GRC status summary and the DARWIN capabilities summary, 
several technology gaps were identified related to (1) characterization and simulation of 3D 
anomalies based on data from different types of inspections, (2) understanding and analysis of 
anomaly deformation and breakup during the forging process, and (3) treatment of various 
factors that can influence fatigue crack growth lives.  A program plan for the development and 
implementation of key algorithms and software modules in DARWIN to address the technology 
gaps has been developed and is described in this section.   
 
Pre-Processing Module for 3D Anomalies.  Over the past decade, GRC pioneered a number of 
studies that focused on methods for measuring 3D anomalies in P/M materials anomalies.  
Several methods were identified for anomaly characterization, including direct measurement of 
the three orthogonal axes of anomalies recovered using the heavy liquid separation process 
(HLS), and indirect measurement of these dimensions based on data from sectioning and 
fractography.  3D anomalies are simulated in DARWIN using six independent random variables 
based on three orientation angles and the dimensions of the primary axis and two aspect ratios 
for the remaining two orthogonal axes.  A software module is needed to convert the data from 
anomaly measurements into the format that is used in DARWIN.  For HLS data, the module 
would convert anomaly major and minor axis measurements into anomaly primary axis and 
aspect ratios.  For data from sectioning or fractography, the module would convert the data from 
2D measurements into 3D anomaly dimensions/orientations using the unfolding algorithm 
described previously.  Since the number of sections probably will be limited, DARWIN would 
need to be enhanced to quantify confidence bounds on fracture risk associated with the 
uncertainty in the spheroid model for the limited number of sections.  Note that HLS 
measurements do not provide any information regarding the orientation or breakup of anomalies 
due to the forging process.  On the other hand, 3D ellipsoids cannot be fully characterized based 
on data from sectioning or fractography.  A Bayesian updating algorithm is therefore envisioned 
that would combine data from the various test data sources into a common set of variables for 
use in numerical simulations.  DARWIN would also be enhanced to display fracture risk 
confidence bounds reduction associated with use of combined data from the various test data 
sources. 
 
Pre-Processing Module for Failure Data from Multiple Anomaly Types.  As mentioned in 
Section 3.1, one of the challenges associated with modeling P/M materials is that the materials—
and the test specimens (particularly unseeded specimens)—typically contain multiple types of 
anomalies that can cause fatigue failure. Under this project, a method was developed for 
estimating the marginal CDFs associated with individual anomaly types, using an approach 
based on the nonparametric statistical model of Kaplan-Meier (1958) combined with the data 
smoothing algorithm proposed by Meeker and Escobar (1998).  This method was documented in 
Section 3.1.  Although the approach has been demonstrated using real failure data, some effort 
would be required to implement the algorithm in DARWIN.  It is envisioned that this would be 
implemented in a separate module that would be used to preprocess the raw failure data into a 
form that could be used directly in DARWIN. 
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Probabilistic Simulation of 3D Anomalies. The current version of DARWIN is limited to 
simulation of uncorrelated random variables.  However, GRC studies suggest that the anomaly 
dimensions could be highly correlated random variables, and anomaly orientations could be 
correlated to additional random variables related to forging strain.  DARWIN enhancements 
would be required to model these relationships among the various anomaly dimensions and 
orientations.  One of the key challenges with the use of correlated random variables to represent 
anomaly dimensions is that it may be difficult to visualize the relationships among the crack 
dimensions in the fracture plane.  Further DARWIN enhancements would be required to provide 
GUI visualization of 3D anomalies at user-specified fracture planes. 
 
Identification of Life-Limiting Anomaly Orientation. To estimate the fracture risk of disk 
materials, the analyst is typically faced with identifying the minimum life location in a 
component.  Since the minimum life location is dependent on a number of factors, such as the 
orientation of the fracture plane, the projected area of the anomaly on the fracture plane, and 
local constraint changes associated with crack transitions, it may be difficult to identify.  
Fortunately, DARWIN enhancements such as life contours and risk contours are under 
development, and these will assist the user with identifying the location once a fracture plane has 
been selected.  However, the user will still need to identify the orientation of the fracture plane, 
and there is no guarantee that it will be conservative.  Anomaly orientation may also influence 
the life-limiting location within a component.  An algorithm is therefore needed in DARWIN 
that will automatically identify the life-limiting anomaly orientation. 
 
Small-Crack Modeling.  Small-crack behavior has been identified as being potentially significant 
for accurate lifing of P/M materials.  The current DARWIN software does not include any 
special treatment of small-crack behavior, either in terms of accelerated growth rates  
(from a deterministic perspective) or in terms of greater scatter in possible growth rates  
(from a probabilistic perspective).  As noted in Section 3.3, SwRI has been investigating  
a simple model for deterministic small-crack growth rate behavior under FAA funding  
(a model which showed some promise for P/M U720), and it is possible that this particular 
model might be implemented in the FAA project.  Investigation/development/implementation of 
alternative models would require additional funding.  The current DARWIN model for life 
scatter is independent of crack size, and there are no current plans in the FAA project to develop 
and implement alternative probabilistic models for scatter in small-crack growth rates. 
Therefore, this would require additional work. 
 
Analysis of Forging Effects.  Previous GRC studies with P/M materials have indicated that the 
size, orientation, and behavior of inherent anomalies may be significantly influenced by the 
forging process. Several of the aircraft engine manufacturers have expressed interest in exploring 
this phenomenon, and the U.S. Air Force has recently funded research programs related to the 
topic.  SwRI will participate in two studies, one a Small Business Innovative Research (SBIR) 
project in partnership with Scientific Forming Technologies Corporation (SFTC), and the other 
as a subcontractor to Pratt & Whitney (P&W).  The SFTC study will focus on linking the SFTC 
DEFORM software with DARWIN, with the initial phase focused on the transfer of forging 
residual stress data from DEFORM to DARWIN.  Future phases, if funded, would consider 
additional variables such as anomaly size and orientation as well as microstructural information.  
The SwRI effort for the P&W study will also use DEFORM data to model the influence of the 
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forging process on anomaly orientation.  Since the USAF has funded only very specific features, 
it is anticipated that further funding may be required to combine the various features related to 
forging effects into a comprehensive toolset that will be of use to the general DARWIN user. 
 
Residual Stress Issues.  A number of residual stress issues are relevant to P/M lifing.  As noted in 
the earlier Status Summary (Section 2.2), DARWIN currently has a basic capability to 
superimpose a user-provided residual stress gradient with 2D finite element model stress results 
for a single crack geometry.  Some additional work is planned under the current FAA grant to 
extend this capability to additional crack geometries and additional analysis modes.  
Further effort would be required to address a complete set of crack geometries and analysis 
modes.  As noted in the previous paragraph, SwRI is currently working with SFTC to develop a 
new DARWIN capability to read DEFORM results files for forging (bulk) residual stresses and 
superimpose these with DARWIN service stresses, and this effort should be completed if the 
SBIR funding continues.  Additional work remains to develop and implement predictive models 
for local residual stresses (e.g., machining residual stresses, or residual stresses arising from 
differential thermal expansion of inclusions) and for the significant relaxation and redistribution 
of residual stresses that can occur in service due to both thermal and mechanical mechanisms. 
 
Other Issues.  The development of DARWIN has been funded primarily by the FAA, and the 
existing features reflect the priorities of the FAA, RISC, and the Industry Steering Committee.  
There are a number of issues that influence fracture risk that are not addressed in the current 
project, and due to competing FAA priorities, probably will not be completed in future FAA 
projects.  For example, an approach is needed to model anomalies that intersect the free surface 
of the component.  In the current version of DARWIN, the free surface is assumed to intersect 
the midpoint of the anomaly, but an approach is needed to model intersections at various 
anomaly locations to simulate the volume of material that is removed by the machining process. 
   
Modeling of the crack formation life is another critical area of need for DARWIN.  Currently, 
DARWIN provides no internal models for predicting the formation/nucleation/initiation life.  
It instead provides a software link to a separate user-supplied crack formation module that 
provides only limited treatment of the crack formation life.  Additional work is needed to 
develop general crack formation modeling capabilities, or to expand the existing software link to 
include other important variables that the user may wish to consider in their own crack formation 
module. 
 
The implementation of formal algorithms in DARWIN necessarily requires validation of the 
engineering models, which is commonly achieved by comparison to actual test data.  
Verification of the software algorithms is also required to confirm that the engineering models 
are implemented in the intended form, and a standardized procedure has been developed at SwRI 
to accomplish this task. It is essential to include verification and validation (V&V) activities in 
any future task funded to enhance DARWIN for P/M lifing. GRC has generated extensive test 
data on the behavior of inclusions in P/M materials and the resulting effect on fatigue life, and 
these data should prove invaluable in future V&V activities. 
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5.0 SUMMARY 
 
Southwest Research Institute and NASA Glenn Research Center have worked independently in 
recent years on the development of probabilistic lifing methods for gas turbine engine rotor 
materials.  This final report summarizes a brief investigation into the current status of relevant 
technology at SwRI and GRC with a view towards a future integration of methods and models 
developed by GRC for probabilistic lifing of powder metallurgy (P/M) nickel rotor alloys into 
the DARWIN software developed by SwRI.  The current status of GRC data and models and the 
DARWIN software was reviewed in detail, and significant accomplishments/capabilities and 
technology gaps were identified.  New algorithm development was conducted in three 
areas.  First, a rigorous methodology for estimating anomaly distributions for materials in which 
multiple anomaly types are operative was developed and verified.  Second, an unfolding 
algorithm that can be used to estimate the dimensions and orientations of 3D spheroids based on 
2D sectioning measurements was implemented and investigated.  Third, the behavior of small 
fatigue cracks in U720 tests conducted by GRC was investigated, and an existing model to 
predict small-crack behavior from large-crack growth rates was evaluated.  Finally, a program 
plan was outlined for potential future research, identifying the most significant opportunities to 
address technology gaps and to develop needed new DARWIN capabilities. 
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